Instrumentation is used to monitor and control the process plant in the oil, gas and petrochemical industries. Instrumentation ensures that the plant operates within defined parameters to produce materials of consistent quality and within the required specifications. It also ensures that the plant is operated safely and acts to correct out of tolerance operation and to automatically shut down the plant to prevent hazardous conditions from occurring. Instrumentation comprises sensor elements, signal transmitters, controllers, indicators and alarms, actuated valves, logic circuits and operator interfaces. An outline of key instrumentation is shown on Process Flow Diagrams (PFD) which indicate the principal equipment and the flow of fluids in the plant. Piping and Instrumentation Diagrams (P&ID) provide details of all the equipment (vessels, pumps, etc), piping and instrumentation on the plant in a symbolic and diagrammatic form. Instrumentation includes sensing devices to measure process parameters such as pressure, temperature, liquid level, flow, velocity, composition, density, weight; and mechanical and electrical parameters such as vibration, position, power, current and voltage. The measured value of a parameter is displayed and recorded locally and/or in a control room. If the measured variable exceeds pre-defined limits an alarm warns the operating personnel of a potential problem. Automatic executive action is taken by the instrumentation to close or open shutdown valves and dampers, or to trip (stop) pumps and compressors, to move the plant to a safe condition. Correct operation of the petrochemical process plant is achieved through the action of control loops. These automatically maintain and control the pressure, temperature, liquid level and flowrate of fluid in vessels and piping. Control loops compare the measured value of a parameter on the plant, eg. pressure, with a pre-determined set point. A difference between the measured variable and the set point generates a signal which modulates the position of a control valve (the final element) to maintain the measured variable at the set point.
Vassily Hatzimanikatis, Meriç Ataman, Noushin Hadadi