Summary
In philosophy of logic and logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules such that there is an effective procedure for determining whether any given formula is the conclusion of a given set of formulae according to the rule. An example of a rule that is not effective in this sense is the infinitary ω-rule. Popular rules of inference in propositional logic include modus ponens, modus tollens, and contraposition. First-order predicate logic uses rules of inference to deal with logical quantifiers. In formal logic (and many related areas), rules of inference are usually given in the following standard form: Premise#1 Premise#2 Premise#n Conclusion This expression states that whenever in the course of some logical derivation the given premises have been obtained, the specified conclusion can be taken for granted as well. The exact formal language that is used to describe both premises and conclusions depends on the actual context of the derivations. In a simple case, one may use logical formulae, such as in: This is the modus ponens rule of propositional logic. Rules of inference are often formulated as schemata employing metavariables.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CS-330: Artificial intelligence
Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
AR-430: Magma and principles
Le cours se concentre sur l'examen interdisciplinaire de phénomènes associatifs et émotionnels et de leurs principes structurants; ordonné autour d'un thème déterminant pour la théorie et la pratique
Show more
Related publications (36)
Related concepts (30)
Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Disjunction elimination
In propositional logic, disjunction elimination (sometimes named proof by cases, case analysis, or or elimination), is the valid argument form and rule of inference that allows one to eliminate a disjunctive statement from a logical proof. It is the inference that if a statement implies a statement and a statement also implies , then if either or is true, then has to be true. The reasoning is simple: since at least one of the statements P and R is true, and since either of them would be sufficient to entail Q, Q is certainly true.
Modus ponens
In propositional logic, modus ponens (ˈmoʊdəs_ˈpoʊnɛnz; MP), also known as modus ponendo ponens (Latin for "method of putting by placing"), implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q. P is true. Therefore Q must also be true." Modus ponens is closely related to another valid form of argument, modus tollens. Both have apparently similar but invalid forms such as affirming the consequent, denying the antecedent, and evidence of absence.
Show more