Hilbert systemIn mathematical physics, Hilbert system is an infrequently used term for a physical system described by a C*-algebra. In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.
Cut-elimination theoremThe cut-elimination theorem (or Gentzen's Hauptsatz) is the central result establishing the significance of the sequent calculus. It was originally proved by Gerhard Gentzen in his landmark 1934 paper "Investigations in Logical Deduction" for the systems LJ and LK formalising intuitionistic and classical logic respectively. The cut-elimination theorem states that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule.
PremiseA premise or premiss is a proposition—a true or false declarative statement—used in an argument to prove the truth of another proposition called the conclusion. Arguments consist of a set of premises and a conclusion. An argument is meaningful for its conclusion only when all of its premises are true. If one or more premises are false, the argument says nothing about whether the conclusion is true or false. For instance, a false premise on its own does not justify rejecting an argument's conclusion; to assume otherwise is a logical fallacy called denying the antecedent.
Double negationIn propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation. Like the law of the excluded middle, this principle is considered to be a law of thought in classical logic, but it is disallowed by intuitionistic logic.
Universal generalizationIn predicate logic, generalization (also universal generalization or universal introduction, GEN) is a valid inference rule. It states that if has been derived, then can be derived. The full generalization rule allows for hypotheses to the left of the turnstile, but with restrictions. Assume is a set of formulas, a formula, and has been derived. The generalization rule states that can be derived if is not mentioned in and does not occur in . These restrictions are necessary for soundness.
Turnstile (symbol)In mathematical logic and computer science the symbol ⊢ () has taken the name turnstile because of its resemblance to a typical turnstile if viewed from above. It is also referred to as tee and is often read as "yields", "proves", "satisfies" or "entails". The turnstile represents a binary relation. It has several different interpretations in different contexts: In epistemology, Per Martin-Löf (1996) analyzes the symbol thus: "...[T]he combination of Frege's Urteilsstrich, judgement stroke [ | ], and Inhaltsstrich, content stroke [—], came to be called the assertion sign.
Judgment (mathematical logic)In mathematical logic, a judgment (or judgement) or assertion is a statement or enunciation in a metalanguage. For example, typical judgments in first-order logic would be that a string is a well-formed formula, or that a proposition is true. Similarly, a judgment may assert the occurrence of a free variable in an expression of the object language, or the provability of a proposition. In general, a judgment may be any inductively definable assertion in the metatheory.
MetatheoremIn logic, a metatheorem is a statement about a formal system proven in a metalanguage. Unlike theorems proved within a given formal system, a metatheorem is proved within a metatheory, and may reference concepts that are present in the metatheory but not the object theory. A formal system is determined by a formal language and a deductive system (axioms and rules of inference). The formal system can be used to prove particular sentences of the formal language with that system.
MetalanguageIn logic and linguistics, a metalanguage is a language used to describe another language, often called the object language. Expressions in a metalanguage are often distinguished from those in the object language by the use of italics, quotation marks, or writing on a separate line. The structure of sentences and phrases in a metalanguage can be described by a metasyntax. For example, to say that the word "noun" can be used as a noun in a sentence, one could write "noun" is a .
MetalogicMetalogic is the study of the metatheory of logic. Whereas logic studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived about the languages and systems that are used to express truths. The basic objects of metalogical study are formal languages, formal systems, and their interpretations.