In biology, a marker gene may have several meanings. In nuclear biology and molecular biology, a marker gene is a gene used to determine if a nucleic acid sequence has been successfully inserted into an organism's DNA. In particular, there are two sub-types of these marker genes: a selectable marker and a marker for screening. In metagenomics and phylogenetics, a marker gene is an orthologous gene group which can be used to delineate between taxonomic lineages.
Selectable marker
A selectable marker protects the organism from a selective agent that would normally kill it or prevent its growth. In a transformation reaction, depending on the transformation efficiency, only one in several million to billion cells may take up DNA. Rather than checking every single cell, scientists use a selective agent to kill all cells that do not contain the foreign DNA, leaving only the desired ones.
Antibiotics are the most common selective agents. In bacteria, antibiotics are used almost exclusively. In plants, antibiotics that kill the chloroplast are often used as well, although tolerance to salts and growth-inhibiting hormones is becoming more popular. In mammals, resistance to antibiotics that would kill the mitochondria is used as a selectable marker.
A screenable marker will make cells containing the gene look different. There are three types of screening commonly used:
Green fluorescent protein makes cells glow green under UV light. A specialized microscope is required to see individual cells. Yellow and red versions are also available, so scientists can look at multiple genes at once. It is commonly used to measure gene expression.
GUS assay (using β-glucuronidase) is an excellent method for detecting a single cell by staining it blue without using any complicated equipment. The drawback is that the cells are killed in the process. It is particularly common in plant science.
Blue white screen is used in both bacteria and eukaryotic cells. The bacterial lacZ gene encodes a beta-galactosidase enzyme. When media containing certain galactosides (e.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In molecular biology, a reporter gene (often simply reporter) is a gene that researchers attach to a regulatory sequence of another gene of interest in bacteria, cell culture, animals or plants. Such genes are called reporters because the characteristics they confer on organisms expressing them are easily identified and measured, or because they are selectable markers. Reporter genes are often used as an indication of whether a certain gene has been taken up by or expressed in the cell or organism population.
A cloning vector is a small piece of DNA that can be stably maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes. The cloning vector may be DNA taken from a virus, the cell of a higher organism, or it may be the plasmid of a bacterium. The vector contains features that allow for the convenient insertion of a DNA fragment into the vector or its removal from the vector, for example through the presence of restriction sites.
In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacterium must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory.
Cancer is the second leading cause of death worldwide. Cancer develops through multiple hallmark functions including apoptosis evasion, unlimited replicative potential, metastasis, and immune avoidance. Over the past few decades, researchers have reported ...
The adaptation of organisms to their environment depends on the innovative potential inherent to genetic variation. In complex organisms such as mammals, processes like development and immunity require tight gene regulation. Complex forms emerge more often ...
EPFL2024
, , ,
The bioremediation of persistent organohalide molecules under anoxic conditions mostly relies on the bacterial process called organohalide respiration (OHR). Organohalide-respiring bacteria (OHRB) are phylogenetically diverse anaerobic bacteria that share ...