Concept

Landfill gas utilization

Landfill gas utilization is a process of gathering, processing, and treating the methane or another gas emitted from decomposing garbage to produce electricity, heat, fuels, and various chemical compounds. After fossil fuel and agriculture, landfill gas is the third largest human generated source of methane. Compared to , methane is 25 times more effective as a greenhouse gas. It is important not only to control its emission but, where conditions allow, use it to generate energy, thus offsetting the contribution of two major sources of greenhouse gases towards climate change. The number of landfill gas projects, which convert the gas into power, went from 399 in 2005 to 519 in 2009 in the United States, according to the US Environmental Protection Agency. These projects are popular because they control energy costs and reduce greenhouse gas emissions. These projects collect the methane gas and treat it, so it can be used for electricity or upgraded to pipeline-grade gas. These projects power homes, buildings, and vehicles. Landfill gas (LFG) is generated through the degradation of municipal solid waste (MSW) and other biodegradable waste, by microorganisms. Aerobic conditions, presence of oxygen, leads to predominately emissions. In anaerobic conditions, as is typical of landfills, methane and are produced in a ratio of 60:40. Methane (CH4) is the important component of landfill gas as it has a calorific value of 33.95 MJ/Nm^3 which gives rise to energy generation benefits. The amount of methane that is produced varies significantly based on composition of the waste. Most of the methane produced in MSW landfills is derived from food waste, composite paper, and corrugated cardboard which comprise 19.4 ± 5.5%, 21.9 ± 5.2%, and 20.9 ± 7.1% respectively on average of MSW landfills in the United States. The rate of landfill gas production varies with the age of the landfill. There are 4 common phases that a section of a MSW landfill undergoes after placement. Typically, in a large landfill, different areas of the site will be at different stages simultaneously.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.