In computer science, a queue is a collection of entities that are maintained in a sequence and can be modified by the addition of entities at one end of the sequence and the removal of entities from the other end of the sequence. By convention, the end of the sequence at which elements are added is called the back, tail, or rear of the queue, and the end at which elements are removed is called the head or front of the queue, analogously to the words used when people line up to wait for goods or services.
The operation of adding an element to the rear of the queue is known as enqueue, and the operation of removing an element from the front is known as dequeue. Other operations may also be allowed, often including a peek or front operation that returns the value of the next element to be dequeued without dequeuing it.
The operations of a queue make it a first-in-first-out (FIFO) data structure. In a FIFO data structure, the first element added to the queue will be the first one to be removed. This is equivalent to the requirement that once a new element is added, all elements that were added before have to be removed before the new element can be removed. A queue is an example of a linear data structure, or more abstractly a sequential collection.
Queues are common in computer programs, where they are implemented as data structures coupled with access routines, as an abstract data structure or in object-oriented languages as classes. Common implementations are circular buffers and linked lists.
Queues provide services in computer science, transport, and operations research where various entities such as data, objects, persons, or events are stored and held to be processed later. In these contexts, the queue performs the function of a buffer.
Another usage of queues is in the implementation of breadth-first search.
Theoretically, one characteristic of a queue is that it does not have a specific capacity. Regardless of how many elements are already contained, a new element can always be added.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
In computer science, a stack is an abstract data type that serves as a collection of elements, with two main operations: Push, which adds an element to the collection, and Pop, which removes the most recently added element that was not yet removed. Additionally, a peek operation can, without modifying the stack, return the value of the last element added. Calling this structure a stack is by analogy to a set of physical items stacked one atop another, such as a stack of plates.
In computer science, a double-ended queue (abbreviated to deque, pronounced deck, like "cheque") is an abstract data type that generalizes a queue, for which elements can be added to or removed from either the front (head) or back (tail). It is also often called a head-tail linked list, though properly this refers to a specific data structure implementation of a deque (see below). Deque is sometimes written dequeue, but this use is generally deprecated in technical literature or technical writing because dequeue is also a verb meaning "to remove from a queue".
In computer science, a priority queue is an abstract data-type similar to a regular queue or stack data structure. Each element in a priority queue has an associated priority. In a priority queue, elements with high priority are served before elements with low priority. In some implementations, if two elements have the same priority, they are served in the same order in which they were enqueued. In other implementations, the order of elements with the same priority is undefined.
We introduce Pi-regulation, a new definition of traffic regulation which extends both the arrival curves of network calculus and Chang's max-plus g-regulation, and also includes new types of regulation, such as packet rate limitations. We provide a new exa ...
2018
Related units (1)
,
We address the problem of substring searchable encryption. A single user produces a big stream of data and later on wants to learn the positions in the string that some patterns occur. Although current techniques exploit auxiliary data structures to achiev ...
2018
,
We address the problem of substring searchable encryption. A single user produces a big stream of data and later on wants to learn the positions in the string that some patterns occur. Although current techniques exploit auxiliary data structures to achiev ...