Vincenzo SavonaVincenzo Savona studied physics in Pisa at the Scuola Normale Superiore and the University of Pisa, prior to completing his PhD at the EPFL's Institute of Theoretical Physics. Subsequently he did post-doctoral work, first at the EPFL and then in the physics department of the Humboldt University of Berlin. In 2002, he returned to the EPFL to create his own research group, receiving a "professeur boursier" fellowship from the Swiss National Science Foundation. In 2006, he was appointed tenure-track assistant professor at the EPFL and joined the NCCR for Quantum Photonics. In 2010 he was appointed associate professor. Currently he directs the Laboratory of Theoretical Physics of Nanosystems.
Claudio BruschiniClaudio Bruschini holds an MSc in high energy physics from the University of Genova and a PhD in Applied Sciences from the Vrije Universiteit Brussel (VUB). He started his career with INFN (Italy, 1993), in the WA92 CERN collaboration (particle physics), and then moved to CERN as a Fellow in the European GP-MIMD2 project, attached to the NA48 collaboration (particle physics, parallel programming, 1994-1995). He then started his close collaboration with EPFL, first in the DeTeC (Demining Technology Center) project (sensors for landmine detection/humanitarian demining, 1996-1997). After DeTeC's end, he started the first of a series of fruitful collaborations with the Vrije Universiteit Brussel (VUB) on humanitarian demining related R&D (1998). This was followed by the EUDEM survey project (The European Union in Humanitarian Demining, 1998), the EUDEM2 three year EC sponsored support measure (www.eudem.info, 2001-2004), and the DELVE support action (www.delve.vub.ac.be, 2007). In parallel he started working within the EPFL's AQUA group (Advanced Quantum Architectures, Edoardo Charbon), on topics as diverse as ultrasonic sensors for in-air application, optical 3D and high speed 2D sensing, sensor networks, or tracking/motion capture systems, in particular for the preparation of research projects. This culminated in the European MEGAFRAME (www.megaframe.eu, FP6, 2006-2010, SPAD arrays and related in-pixel time stamping electronics in deep submicron CMOS technology) and SPADnet (www.spadnet.eu, FP7, 2010-2014, networked SPAD arrays for Positron Emission Tomography) projects, coordinated by EPFL-AQUA. As from 2009 he also worked with Dario Floreano on the management of the CURVACE Curved Artificial Compound Eyes FP7 project (www.curvace.org), coordinated by EPFL-LIS. He was also active with CHUV (Lausanne University Hospital) within EndoTOFPET-US (endoscopic PET) as well as on a CTI project devoted to the development of a new hand-held standalone tool for tracer-guided medical procedures. In 2014 he had also the pleasure of joining the EPFL ICLAB of Christian Enz during its ramp-up phase, collaborating on device related topics (SNF GigaRadMOST) and biomedical R&D (NanoTera WiseSkin). Claudio is now fully with EPFL’s Advanced Quantum Architecture (AQUA). He has also been active as independent scientific consultant, under the label CBR Scientific Consulting, on the preparation of (European) R&D project proposals and the execution of individual studies, and worked in 2006 for a local start-up as operations manager and R&D advisor.... but this is another story. An unauthorized early biography is available at http://lami.epfl.ch/team/claudiob/... Jiuxuan ZhaoJiuxuan Zhao received his M.Sc. degree from Zhejiang University, Hangzhou, China, in 2016. He worked in Bosch Sensortec from 2016 to 2018. He is currently working towards his PhD in AQUA Laboratory at EPFL. His main research interests are single-photon counting time-correlated image sensors for LiDAR application.
Pasquale ScarlinoI obtained my master's degree in Physics at the University of Salento, Lecce (Italy) in February 2011. During 2006-2011, I have also been a student of Scuola Superiore ISUFI (SSI). SSI is one of six schools of excellence established in Italy to develop the intellectual capital in technological and social sciences. I conducted an external Master thesis project during an 8 months internship in the Quantum Transport Group at TU Delft, under the supervision of Prof. L.M.K. Vandersypen. There, I implemented the Quantum Point Contact Radio-Frequency Reflectometry technique, which allows increasing the single-shot electron spin readout bandwidth and is currently routinely used in the group.I obtained my Ph.D. degree in February 2016, in the Spin Qubits group of Prof. L.M.K. Vandersypen at the Kavli Institute of Nanoscience-Qutech (TU Delft). During my Ph.D. I have been leading the Si/SiGe spin qubits project, collaborating with the M. Eriksson Group at Wisconsin University. In parallel, I have been working on other different projects, in particular with GaAs depletion quantum dots, high impedance superconducting resonators, and surface acoustic wave resonators. I have been working as a Postdoc fellow in the group of Prof. A. Wallraff (Quantum Device Lab) at ETH Zurich. My main project, in collaboration with the group of Prof. K. Ensslin and Prof. T. Ihn, consisted in integrating semiconductor and superconductor technologies. Realizing a well-controlled interface between the semiconductor and superconductor-based quantum information technologies may allow harnessing the best of both device architectures, for example by providing an interface between strongly coupled charge state and high coherence spin states. Furthermore, it enables the possibility to explore light/matter hybridization in a class of solid-state systems and regimes that are new in the context of quantum optics.From June 2019 till September 2020, I have been a Senior Researcher at Microsoft Station Q Copenhagen and at the Center for Quantum Devices in Copenhagen, focusing on developing semiconductor-superconducting hybrid hardware for topologically protected quantum computation.Since October 2020, I am a tenure track Assistant Professor of Physics in the School of Basic Sciences at the EPFL where I founded the Hybrid Quantum Circuit (HQC) laboratory.
Daniel OberliDaniel Oberli was born in Switzerland in 1957. After completing his undergraduate education in the Physics department at EPFL he was awarded a Fulbright Fellowship to enter the graduate program in physics from the University of Illinois at Urbana-Champaign. He received his degree of Doctor of Philosophy in Physics in 1988. His thesis topic was the intersubband dynamics of photo excited carriers in two-dimensional semiconductor structures, for which he developed an original experimental approach based on time-resolved Raman scattering of electronic excitations. From 1988 to 1989, he was a post-doctoral fellow at AT&T Bell laboratories, where he pursued his research interests on the ultra fast time-resolved optical properties of semiconductor microstructures under the leadership of Dr. J. Shah. In 1990, he joined the Walter Schottky Institute of the Technical University of Munich, where he evidenced and studied Fano resonances in the optical excitation spectra of semiconductor quantum wells. Since 1994, he has been in the Institute of Physics of the School of Basic Sciences at EPFL. His main research activities include the electronic and optical properties of low-dimensional semiconductor structures, in particular quantum wires, quantum wells and dots, Raman scattering by phonons and electronic excitations in nanostructures and the radiative properties of exciton-polaritons in semiconductor microcavities, including the dynamics of exciton-polaritons and their interactions. He is a member of the American Physical Society.