In , a branch of mathematics, a rigid category is a where every object is rigid, that is, has a dual X* (the internal Hom [X, 1]) and a morphism 1 → X ⊗ X* satisfying natural conditions. The category is called right rigid or left rigid according to whether it has right duals or left duals. They were first defined (following Alexander Grothendieck) by Neantro Saavedra Rivano in his thesis on .
There are at least two equivalent definitions of a rigidity.
An object X of a monoidal category is called left rigid if there is an object Y and morphisms and such that both compositions
are identities. A right rigid object is defined similarly.
An inverse is an object X−1 such that both X ⊗ X−1 and X−1 ⊗ X are isomorphic to 1, the identity object of the monoidal category. If an object X has a left (respectively right) inverse X−1 with respect to the tensor product then it is left (respectively right) rigid, and X* = X−1.
The operation of taking duals gives a contravariant functor on a rigid category.
One important application of rigidity is in the definition of the trace of an endomorphism of a rigid object. The trace can be defined for any , i. e. a rigid category such that ( )**, the functor of taking the dual twice repeated, is isomorphic to the identity functor. Then for any right rigid object X, and any other object Y, we may define the isomorphism
and its reciprocal isomorphism
Then for any endomorphism , the trace is of f is defined as the composition:
We may continue further and define the dimension of a rigid object to be:
Rigidity is also important because of its relation to internal Hom's. If X is a left rigid object, then every internal Hom of the form [X, Z] exists and is isomorphic to Z ⊗ Y. In particular, in a rigid category, all internal Hom's exist.
A monoidal category where every object has a left (respectively right) dual is also sometimes called a left (respectively right) autonomous category. A monoidal category where every object has both a left and a right dual is sometimes called an .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, an autonomous category is a where dual objects exist. A left (resp. right) autonomous category is a where every object has a left (resp. right) dual. An autonomous category is a monoidal category where every object has both a left and a right dual. is a synonym for autonomous category. In a , the existence of left duals is equivalent to the existence of right duals, categories of this kind are called (symmetric) .
In , a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the having finite-dimensional vector spaces as s and linear maps as s, with tensor product as the structure. Another example is , the category having sets as objects and relations as morphisms, with .
In mathematics, a monoidal category (or tensor category) is a equipped with a bifunctor that is associative up to a natural isomorphism, and an I that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant s commute. The ordinary tensor product makes vector spaces, abelian groups, R-modules, or R-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples.
Let M be a monoidal category endowed with a distinguished class of weak equivalences and with appropriately compatible classifying bundles for monoids and comonoids. We define and study homotopy-invariant notions of normality for maps of monoids and of con ...
We exhibit sufficient conditions for a monoidal monad T on a monoidal category C to induce a monoidal structure on the Eilenberg-Moore category C^T that represents bimorphisms. The category of actions in C^T is then shown to be monadic over the base catego ...
We prove that the category of rational SO(2)-equivariant spectra has a simple algebraic model. Furthermore, all of our model categories and Quillen equivalences are monoidal, so we can use this classification to understand ring spectra and module spectra v ...