Recursion occurs when the definition of a concept or process depends on a simpler version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references can occur.
A process that exhibits recursion is recursive.
In mathematics and computer science, a class of objects or methods exhibits recursive behavior when it can be defined by two properties:
A simple base case (or cases) — a terminating scenario that does not use recursion to produce an answer
A recursive step — a set of rules that reduces all successive cases toward the base case.
For example, the following is a recursive definition of a person's ancestor. One's ancestor is either:
One's parent (base case), or
One's parent's ancestor (recursive step).
The Fibonacci sequence is another classic example of recursion:
Fib(0) = 0 as base case 1,
Fib(1) = 1 as base case 2,
For all integers n > 1, Fib(n) = Fib(n − 1) + Fib(n − 2).
Many mathematical axioms are based upon recursive rules. For example, the formal definition of the natural numbers by the Peano axioms can be described as: "Zero is a natural number, and each natural number has a successor, which is also a natural number." By this base case and recursive rule, one can generate the set of all natural numbers.
Other recursively defined mathematical objects include factorials, functions (e.g., recurrence relations), sets (e.g., Cantor ternary set), and fractals.
There are various more tongue-in-cheek definitions of recursion; see recursive humor.
Recursion is the process a procedure goes through when one of the steps of the procedure involves invoking the procedure itself. A procedure that goes through recursion is said to be 'recursive'.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
L'objectif de ce cours est d'initier les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de
l'informatique et des communications et de développer une première compétence
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science. The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite statement.
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity).
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In linear recurrences, the nth term is equated to a linear function of the previous terms.
Dielectric nanoresona tors uniquely support both magnetic and electric resonances across a wide wavelength range. They are thus being exploited in a growing number of groundbreaking applications. In particular, they have been recently suggested as promisin ...
We give a construction of an efficient one-out-of-many proof system, in which a prover shows that he knows the pre-image for one element in a set, based on the hardness of lattice problems. The construction employs the recent zero-knowledge framework of Ly ...
We describe a family of recursive methods for the synthesis of qubit permutations on quantum computers with limited qubit connectivity. Two objectives are of importance: circuit size and depth. In each case we combine a scalable heuristic with a nonscalabl ...