Summary
In chemistry, solvent effects are the influence of a solvent on chemical reactivity or molecular associations. Solvents can have an effect on solubility, stability and reaction rates and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction. A solute dissolves in a solvent when solvent-solute interactions are more favorable than solute-solute interaction. Different solvents can affect the equilibrium constant of a reaction by differential stabilization of the reactant or product. The equilibrium is shifted in the direction of the substance that is preferentially stabilized. Stabilization of the reactant or product can occur through any of the different non-covalent interactions with the solvent such as H-bonding, dipole-dipole interactions, van der Waals interactions etc. The ionization equilibrium of an acid or a base is affected by a solvent change. The effect of the solvent is not only because of its acidity or basicity but also because of its dielectric constant and its ability to preferentially solvate and thus stabilize certain species in acid-base equilibria. A change in the solvating ability or dielectric constant can thus influence the acidity or basicity. In the table above, it can be seen that water is the most polar-solvent, followed by DMSO, and then acetonitrile. Consider the following acid dissociation equilibrium: HA A− + H+ Water, being the most polar-solvent listed above, stabilizes the ionized species to a greater extent than does DMSO or Acetonitrile. Ionization - and, thus, acidity - would be greatest in water and lesser in DMSO and Acetonitrile, as seen in the table below, which shows pKa values at 25 °C for acetonitrile (ACN) and dimethyl sulfoxide (DMSO) and water. Many carbonyl compounds exhibit keto–enol tautomerism. This effect is especially pronounced in 1,3-dicarbonyl compounds that can form hydrogen-bonded enols. The equilibrium constant is dependent upon the solvent polarity, with the cis-enol form predominating at low polarity and the diketo form predominating at high polarity.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.