Concept

IceCube Neutrino Observatory

Summary
The IceCube Neutrino Observatory (or simply IceCube) is a neutrino observatory constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under the Antarctic ice, distributed over a cubic kilometre. Similar to its predecessor, the Antarctic Muon And Neutrino Detector Array (AMANDA), IceCube consists of spherical optical sensors called Digital Optical Modules (DOMs), each with a photomultiplier tube (PMT) and a single-board data acquisition computer which sends digital data to the counting house on the surface above the array. IceCube was completed on 18 December 2010. DOMs are deployed on strings of 60 modules each at depths between 1,450 and 2,450 meters into holes melted in the ice using a hot water drill. IceCube is designed to look for point sources of neutrinos in the teraelectronvolt (TeV) range to explore the highest-energy astrophysical processes. IceCube is part of a series of projects developed and supervised by the University of Wisconsin–Madison. Collaboration and funding are provided by numerous other universities and research institutions worldwide. Construction of IceCube was only possible during the Antarctic austral summer from November to February, when permanent sunlight allows for 24-hour drilling. Construction began in 2005, when the first IceCube string was deployed and sufficient data was collected to verify that the optical sensors functioned correctly. In the 2005–2006 season, an additional eight strings were deployed, making IceCube the largest neutrino telescope in the world. Construction was completed on 17 December 2010. The total cost of the project was $279 million. The IceCube Neutrino Observatory is composed of several sub-detectors which is also in addition to the main in-ice array. AMANDA, the Antarctic Muon And Neutrino Detector Array, was the first part built, and it served as a proof-of-concept for IceCube. AMANDA was turned off in May 2009.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.