Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We investigate experimentally metallic nanoparticle composites fabricated by bottom-up techniques as potential candidates for optical metamaterials. Depending on the plasmonic resonances sustained by individual NPs and their nanoscale organization into lar ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2012
We demonstrate a composite metamaterial composed of two asymmetrically oriented pi-shaped structures that exhibits plasmonic analogue of electromagnetically induced transparency (EIT). The structure exhibits fine tuning of EIT-like spectral behavior and sp ...
We study, in the context of the full wave equation, an approximate cloaking scheme that was previously considered for the Helmholtz equation [R. V. Kohn, D. Onofrei, M. S. Vogelius, and M. I. Weinstein, Comm. Pure Appl. Math., 63 (2010), pp. 973--1016, H.- ...
Society for Industrial and Applied Mathematics2012
We introduce a novel bottom-up approach to fabricate by self assembly a metamaterial from metallic nanoparticles in a two-step process. In the first step, a metamaterial made of densely packed silver nanoparticles is required. The material dispersion with ...
Like photonic crystals have revolutionized the way of manipulating optical waves at the sub-micron scale, phononic crystals have more recently played similar decisive role for sound waves, or more generally elastic waves. Then, the idea of coupling light a ...
By introducing a conducting metal layer underneath a Fang resonant asymmetric ring/disk plasmonic nanocavity system, we demonstrate that electromagnetic fields. can be strongly enhanced. These large electromagnetic fields extending deep into the medium are ...
All-electrical spin-wave spectroscopy and frequency-resolved magneto-optical Kerr-effect measurements are combined to study spin waves propagating through a magnetic antidot lattice nanopatterned from a Ni80Fe20 thin film. Spin waves are injected from a pl ...
The properties of single site-controlled InGaAsN quantum wires (QWRs)-both untreated and irradiated with atomic hydrogen-are probed by micro-magnetophotoluminescence spectroscopy. The strong anisotropy of the diamagnetic shift measured for different orient ...
The low temperature microwave absorption anomaly reported by Corzilius et al. [Phys. Rev. B 75, 235416 (2007)] in single-wall carbon nanotubes (SWCNTs) is revisited. It was originally reported that the microwave absorption of CVD grown SWCNTs shows an unex ...
Plasmonic metamaterials based on metal-dielectric nanostructures exhibit unique optical properties such as high near-field enhancement, negative refractive indexing, and optical cloaking. In this paper, we present a plasmonic multiband metamaterial based o ...