In chemistry, the mass concentration ρi (or γi) is defined as the mass of a constituent mi divided by the volume of the mixture V.
For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture. This explains the usage of ρ (the lower case Greek letter rho), the symbol most often used for density.
The volume V in the definition refers to the volume of the solution, not the volume of the solvent. One litre of a solution usually contains either slightly more or slightly less than 1 litre of solvent because the process of dissolution causes volume of liquid to increase or decrease. Sometimes the mass concentration is called titre.
The notation common with mass density underlines the connection between the two quantities (the mass concentration being the mass density of a component in the solution), but it can be a source of confusion especially when they appear in the same formula undifferentiated by an additional symbol (like a star superscript, a bolded symbol or varrho).
Mass concentration depends on the variation of the volume of the solution due mainly to thermal expansion. On small intervals of temperature the dependence is :
where ρi(T0) is the mass concentration at a reference temperature, α is the thermal expansion coefficient of the mixture.
The sum of the mass concentrations of all components (including the solvent) gives the density ρ of the solution:
Thus, for pure component the mass concentration equals the density of the pure component.
The SI-unit for mass concentration is kg/m3 (kilogram/cubic metre). This is the same as mg/mL and g/L. Another commonly used unit is g/(100 mL), which is identical to g/dL (gram/decilitre).
In biology, the "%" symbol is sometimes incorrectly used to denote mass concentration, also called "mass/volume percentage". A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter, having the unit symbol mol/L or mol/dm3 in SI unit. A solution with a concentration of 1 mol/L is said to be 1 molar, commonly designated as 1 M.
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, like in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios.
In chemistry, the mole fraction or molar fraction (xi or χi) is defined as unit of the amount of a constituent (expressed in moles), ni, divided by the total amount of all constituents in a mixture (also expressed in moles), ntot. This expression is given below: The sum of all the mole fractions is equal to 1: The same concept expressed with a denominator of 100 is the mole percent, molar percentage or molar proportion (mol%). The mole fraction is also called the amount fraction.
Time series analyses of solute concentrations in streamwater and precipitation are powerful tools for unraveling the interplay of hydrological and biogeochemical processes at the catchment scale. While such datasets are available for many sites around the ...
Nature Portfolio2024
,
The representation of Arctic clouds and their phase distributions, i.e., the amount of ice and supercooled water, influences predictions of future Arctic warming. Therefore, it is essential that cloud phase is correctly captured by models in order to accur ...
Equivalent black carbon (eBC) mass concentration was measured with a commercial aethalometer (model AE33, Magee Scientific, Berkeley, USA). Measurements were performed onboard of the Swedish icebreaker (I/B) Oden from August to September 2018 as part of th ...