Summary
The angstrom (ˈæŋstrəm; ) or ångström is a metric unit of length equal to e-10 m; that is, one ten-billionth (US) of a metre, a hundred-millionth of a centimetre, 0.1 nanometre, or 100 picometres. Its symbol is Å, a letter of the Swedish alphabet. The unit is named after the Swedish physicist Anders Jonas Ångström (1814–1874). The angstrom is often used in the natural sciences and technology to express sizes of atoms, molecules, microscopic biological structures, and lengths of chemical bonds, arrangement of atoms in crystals, wavelengths of electromagnetic radiation, and dimensions of integrated circuit parts. The atomic (covalent) radii of phosphorus, sulfur, and chlorine are about 1 angstrom, while that of hydrogen is about 0.5 angstroms. Visible light has wavelengths in the range of 4000–7000 Å. In the late 19th century, spectroscopists adopted e-10 of a metre as a convenient unit to express the wavelengths of characteristic spectral lines (monochromatic components of the emission spectrum) of chemical elements. However, they soon realized that the definition of the metre at the time, based on a material artifact, was not accurate enough for their work. So, around 1907 they defined their own unit of length, which they called "Ångström", based on the wavelength of a specific spectral line. It was only in 1960, when the metre was redefined in the same way, that the angstrom became again equal to e-10 metre. Even though it is a decimal power fraction of the metre, the angstrom was never part of the SI system of units, and it has been increasingly replaced by the nanometre or picometre. Up to 2019, it was listed as a compatible unit by both the International Bureau of Weights and Measures (BIPM) and the US National Institute of Standards and Technology (NIST), but it is not mentioned in the 9th edition of the official SI document, the "BIPM Brochure" (2019) or in the NIST version of the same. The 8th edition of the BIPM brochure (2006) and the NIST guide 811 (2008) used the spelling ångström, with Swedish letters; however, this form is rare in English texts.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (10)
Conjugate Gradient Optimization
Explores Conjugate Gradient optimization, covering quadratic and nonlinear cases, Wolfe conditions, BFGS, CG algorithms, and matrix symmetry.
Linux Basics: Command Line and Psi4
Covers Linux basics and Psi4 usage for electronic structure calculations.
Diagonalisation of Moment of Inertia
Explores diagonalization of moment of inertia and principal directions in orthonormal base vectors.
Show more
Related publications (16)

Optical microscopy gets down to angstroms

Suliana Manley, Giorgio Tortarolo

Super-resolution microscopy at angstrom precision could pave the way to optical structural biology in cells. ...
NATURE PORTFOLIO2022
Show more
Related concepts (16)
History of the metre
The history of the metre starts with the Scientific Revolution that is considered to have begun with Nicolaus Copernicus's publication of De revolutionibus orbium coelestium in 1543. Increasingly accurate measurements were required, and scientists looked for measures that were universal and could be based on natural phenomena rather than royal decree or physical prototypes. Rather than the various complex systems of subdivision then in use, they also preferred a decimal system to ease their calculations.
Picometre
The picometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: pm) or picometer (American spelling) is a unit of length in the International System of Units (SI), equal to 1e-12m, or one trillionth (1/1,000,000,000,000) of a metre, which is the SI base unit of length. The picometre is one thousand femtometres, one thousandth of a nanometre (1/1,000 nm), one millionth of a micrometre (also known as a micron), one billionth of a millimetre, and one trillionth of a metre.
Unit of length
A unit of length refers to any arbitrarily chosen and accepted reference standard for measurement of length. The most common units in modern use are the metric units, used in every country globally. In the United States the U.S. customary units are also in use. British Imperial units are still used for some purposes in the United Kingdom and some other countries. The metric system is sub-divided into SI and non-SI units.
Show more