**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Homogeneity (physics)

Summary

In physics, a homogeneous material or system has the same properties at every point; it is uniform without irregularities. A uniform electric field (which has the same strength and the same direction at each point) would be compatible with homogeneity (all points experience the same physics). A material constructed with different constituents can be described as effectively homogeneous in the electromagnetic materials domain, when interacting with a directed radiation field (light, microwave frequencies, etc.).
Mathematically, homogeneity has the connotation of invariance, as all components of the equation have the same degree of value whether or not each of these components are scaled to different values, for example, by multiplication or addition. Cumulative distribution fits this description. "The state of having identical cumulative distribution function or values".
The definition of homogeneous strongly depends on the context used. For example, a composite material is made up of different individual materials, known as "constituents" of the material, but may be defined as a homogeneous material when assigned a function. For example, asphalt paves our roads, but is a composite material consisting of asphalt binder and mineral aggregate, and then laid down in layers and compacted. However, homogeneity of materials does not necessarily mean isotropy. In the previous example, a composite material may not be isotropic.
In another context, a material is not homogeneous in so far as it is composed of atoms and molecules. However, at the normal level of our everyday world, a pane of glass, or a sheet of metal is described as glass, or stainless steel. In other words, these are each described as a homogeneous material.
A few other instances of context are: dimensional homogeneity (see below) is the quality of an equation having quantities of same units on both sides; homogeneity (in space) implies conservation of momentum; and homogeneity in time implies conservation of energy.
In the context of composite metals is an alloy.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (20)

Related people (2)

Related concepts (16)

Related courses (2)

Related lectures (17)

PHYS-402: Astrophysics V : observational cosmology

Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.

PHYS-428: Relativity and cosmology II

This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major

Turbulence Cascade: Kolmogorov Theory

Explores Kolmogorov's theory on turbulence cascade and its physical interpretations, including the Karman-Howarth-Monin relation.

Stochastic Models for Communications

Covers stochastic models for communications, including Poisson processes and counting processes.

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique. Lagrangian mechanics describes a mechanical system as a pair consisting of a configuration space and a smooth function within that space called a Lagrangian. For many systems, where and are the kinetic and potential energy of the system, respectively.

In physics, a symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be continuous (such as rotation of a circle) or discrete (e.g., reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries.

Photons traveling cosmological distances through the inhomogeneous Universe experience a great variation in their in-medium induced effective mass. Using the EAGLE suite of hydrodynamical simulations, we infer the free electron distribution and thereby the ...

Alfred Johny Wüest, Damien Bouffard, Oscar Rodrigo Sepúlveda Steiner

In situ observations of biophysical interactions in natural waters typically focus on physical mechanisms influencing biological activity. Yet, biological activity can also drive physical processes in aquatic environments. A community of photoautotrophic, ...

2021Sergey Sibiryakov, Mikhail Ivanov

We present a non-perturbative calculation of the 1-point probability distribution function (PDF) for the spherically-averaged matter density field. The PDF is represented as a path integral and is evaluated using the saddle-point method. It factorizes into ...