Summary
A metamaterial absorber is a type of metamaterial intended to efficiently absorb electromagnetic radiation such as light. Furthermore, metamaterials are an advance in materials science. Hence, those metamaterials that are designed to be absorbers offer benefits over conventional absorbers such as further miniaturization, wider adaptability, and increased effectiveness. Intended applications for the metamaterial absorber include emitters, photodetectors, sensors, spatial light modulators, infrared camouflage, wireless communication, and use in solar photovoltaics and thermophotovoltaics. For practical applications, the metamaterial absorbers can be divided into two types: narrow band and broadband. For example, metamaterial absorbers can be used to improve the performance of photodetectors. Metamaterial absorbers can also be used for enhancing absorption in both solar photovoltaic and thermo-photovoltaic applications. Skin depth engineering can be used in metamaterial absorbers in photovoltaic applications as well as other optoelectronic devices, where optimizing the device performance demands minimizing resistive losses and power consumption, such as photodetectors, laser diodes, and light emitting diodes. In addition, the advent of metamaterial absorbers enable researchers to further understand the theory of metamaterials which is derived from classical electromagnetic wave theory. This leads to understanding the material's capabilities and reasons for current limitations. Unfortunately, achieving broadband absorption, especially in the THz region (and higher frequencies), still remains a challenging task because of the intrinsically narrow bandwidth of surface plasmon polaritons (SPPs) or localized surface plasmon resonances (LSPRs) generated on metallic surfaces at the nanoscale, which are exploited as a mechanism to obtain perfect absorption. Metamaterials are artificial materials which exhibit unique properties which do not occur in nature. These are usually arrays of structures which are smaller than the wavelength they interact with.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.