In geometry, the small complex icosidodecahedron is a degenerate uniform star polyhedron. Its edges are doubled, making it degenerate. The star has 32 faces (20 triangles and 12 pentagons), 60 (doubled) edges and 12 vertices and 4 sharing faces. The faces in it are considered as two overlapping edges as topological polyhedron.
A small complex icosidodecahedron can be constructed from a number of different vertex figures.
A very similar figure emerges as a geometrical truncation of the great stellated dodecahedron, where the pentagram faces become doubly-wound pentagons ({5/2} --> {10/2}), making the internal pentagonal planes, and the three meeting at each vertex become triangles, making the external triangular planes.
The small complex icosidodecahedron can be seen as a compound of the icosahedron {3,5} and the great dodecahedron {5,5/2} where all vertices are precise and edges coincide. The small complex icosidodecahedron resembles an icosahedron, because the great dodecahedron is completely contained inside the icosahedron.
Its two-dimensional analogue would be the compound of a regular pentagon, {5}, representing the icosahedron as the n-dimensional pentagonal polytope, and regular pentagram, {5/2}, as the n-dimensional star. These shapes would share vertices, similarly to how its 3D equivalent shares edges.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra (nonconvex regular polyhedra), with Schläfli symbol {3,} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence. The great icosahedron can be constructed analogously to the pentagram, its two-dimensional analogue, via the extension of the (n–1)-dimensional simplex faces of the core n-polytope (equilateral triangles for the great icosahedron, and line segments for the pentagram) until the figure regains regular faces.
In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol {,3}. It is one of four nonconvex regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at each vertex. It shares its vertex arrangement, although not its vertex figure or vertex configuration, with the regular dodecahedron, as well as being a stellation of a (smaller) dodecahedron. It is the only dodecahedral stellation with this property, apart from the dodecahedron itself.
In geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 30 vertices. It is given a Schläfli symbol r{3,}. It is the rectification of the great stellated dodecahedron and the great icosahedron. It was discovered independently by , and . The figure is a rectification of the great icosahedron or the great stellated dodecahedron, much as the (small) icosidodecahedron is related to the (small) icosahedron and (small) dodecahedron, and the cuboctahedron to the cube and octahedron.