Concept

Rectified 7-orthoplexes

In seven-dimensional geometry, a rectified 7-orthoplex is a convex uniform 7-polytope, being a rectification of the regular 7-orthoplex. There are unique 7 degrees of rectifications, the zeroth being the 7-orthoplex, and the 6th and last being the 7-cube. Vertices of the rectified 7-orthoplex are located at the edge-centers of the 7-orthoplex. Vertices of the birectified 7-orthoplex are located in the triangular face centers of the 7-orthoplex. Vertices of the trirectified 7-orthoplex are located in the tetrahedral cell centers of the 7-orthoplex. The rectified 7-orthoplex is the vertex figure for the demihepteractic honeycomb. The rectified 7-orthoplex's 84 vertices represent the kissing number of a sphere-packing constructed from this honeycomb. or rectified heptacross rectified hecatonicosoctaexon (Acronym rez) (Jonathan Bowers) - rectified 128-faceted polyexon There are two Coxeter groups associated with the rectified heptacross, one with the C7 or [4,3,3,3,3,3] Coxeter group, and a lower symmetry with two copies of pentacross facets, alternating, with the D7 or [34,1,1] Coxeter group. Cartesian coordinates for the vertices of a rectified heptacross, centered at the origin, edge length are all permutations of: (±1,±1,0,0,0,0,0) Its 84 vertices represent the root vectors of the simple Lie group D7. The vertices can be seen in 3 hyperplanes, with the 21 vertices rectified 6-simplexs cells on opposite sides, and 42 vertices of an expanded 6-simplex passing through the center. When combined with the 14 vertices of the 7-orthoplex, these vertices represent the 98 root vectors of the B7 and C7 simple Lie groups. Birectified heptacross Birectified hecatonicosoctaexon (Acronym barz) (Jonathan Bowers) - birectified 128-faceted polyexon Cartesian coordinates for the vertices of a birectified 7-orthoplex, centered at the origin, edge length are all permutations of: (±1,±1,±1,0,0,0,0) A trirectified 7-orthoplex is the same as a trirectified 7-cube.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (1)
Uniform 7-polytope
In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets. A uniform 7-polytope is one whose symmetry group is transitive on vertices and whose facets are uniform 6-polytopes. Regular 7-polytopes are represented by the Schläfli symbol {p,q,r,s,t,u} with u {p,q,r,s,t} 6-polytopes facets around each 4-face. There are exactly three such convex regular 7-polytopes: {3,3,3,3,3,3} - 7-simplex {4,3,3,3,3,3} - 7-cube {3,3,3,3,3,4} - 7-orthoplex There are no nonconvex regular 7-polytopes.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.