Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Recently, it has been shown that, in spite of the significant performance of deep neural networks in different fields, those are vulnerable to adversarial examples. In this paper, we propose a gradient-based adversarial attack against transformer-based tex ...
We study the query-based attack against image retrieval to evaluate its robustness against adversarial examples under the black-box setting, where the adversary only has query access to the top-1 ranked unlabeled images from the database. Compared with que ...
We present a method for making neural network predictions robust to shifts from the training data distribution. The proposed method is based on making predictions via a diverse set of cues (called 'middle domains') and ensembling them into one strong predi ...
Protecting ML classifiers from adversarial examples is crucial. We propose that the main threat is an attacker perturbing a confidently classified input to produce a confident misclassification. We consider in this paper the attack in which a small number ...
This paper tackles the problem of adversarial examples from a game theoretic point of view. We study the open question of the existence of mixed Nash equilibria in the zero-sum game formed by the attacker and the classifier. While previous works usually al ...
Deep neural networks (DNNs) have achieved great success in image classification and recognition compared to previous methods. However, recent works have reported that DNNs are very vulnerable to adversarial examples that are intentionally generated to misl ...
Recent advances on Vision Transformer (ViT) and its improved variants have shown that self-attention-based networks surpass traditional Convolutional Neural Networks (CNNs) in most vision tasks. However, existing ViTs focus on the standard accuracy and com ...
With the increasing amount of available data and advances in computing capabilities, deep neural networks (DNNs) have been successfully employed to solve challenging tasks in various areas, including healthcare, climate, and finance. Nevertheless, state-of ...
Deep neural networks have achieved impressive results in many image classification tasks. However, since their performance is usually measured in controlled settings, it is important to ensure that their decisions remain correct when deployed in noisy envi ...
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...