Summary
In computer science, radix sort is a non-comparative sorting algorithm. It avoids comparison by creating and distributing elements into buckets according to their radix. For elements with more than one significant digit, this bucketing process is repeated for each digit, while preserving the ordering of the prior step, until all digits have been considered. For this reason, radix sort has also been called bucket sort and digital sort. Radix sort can be applied to data that can be sorted lexicographically, be they integers, words, punch cards, playing cards, or the mail. Radix sort dates back as far as 1887 to the work of Herman Hollerith on tabulating machines. Radix sorting algorithms came into common use as a way to sort punched cards as early as 1923. The first memory-efficient computer algorithm for this sorting method was developed in 1954 at MIT by Harold H. Seward. Computerized radix sorts had previously been dismissed as impractical because of the perceived need for variable allocation of buckets of unknown size. Seward's innovation was to use a linear scan to determine the required bucket sizes and offsets beforehand, allowing for a single static allocation of auxiliary memory. The linear scan is closely related to Seward's other algorithm — counting sort. In the modern era, radix sorts are most commonly applied to collections of binary strings and integers. It has been shown in some benchmarks to be faster than other more general-purpose sorting algorithms, sometimes 50% to three times faster. Radix sorts can be implemented to start at either the most significant digit (MSD) or least significant digit (LSD). For example, with 1234, one could start with 1 (MSD) or 4 (LSD). LSD radix sorts typically use the following sorting order: short keys come before longer keys, and then keys of the same length are sorted lexicographically. This coincides with the normal order of integer representations, like the sequence [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. LSD sorts are generally stable sorts.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
CS-250: Algorithms I
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-211: Group Theory
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Show more
Related publications (54)