Reflection mappingIn computer graphics, environment mapping, or reflection mapping, is an efficient technique for approximating the appearance of a reflective surface by means of a precomputed texture. The texture is used to store the of the distant environment surrounding the rendered object. Several ways of storing the surrounding environment have been employed. The first technique was sphere mapping, in which a single texture contains the image of the surroundings as reflected on a spherical mirror.
Caustic (optics)In optics, a caustic or caustic network is the envelope of light rays which have been reflected or refracted by a curved surface or object, or the projection of that envelope of rays on another surface. The caustic is a curve or surface to which each of the light rays is tangent, defining a boundary of an envelope of rays as a curve of concentrated light. Therefore, in the photo to the right, caustics can be seen as patches of light or their bright edges. These shapes often have cusp singularities.
VulkanVulkan is a low-overhead, cross-platform API, open standard for 3D graphics and computing. Vulkan targets high-performance real-time 3D-graphics applications, such as video games and interactive media, and highly parallelized computing. Vulkan is intended to offer higher performance and more efficient CPU and GPU usage compared to the older OpenGL and Direct3D 11 APIs. It does so by providing a considerably lower-level API for the application than the older APIs that more closely resembles how modern GPUs work.
Shadow mappingShadow mapping or shadowing projection is a process by which shadows are added to 3D computer graphics. This concept was introduced by Lance Williams in 1978, in a paper entitled "Casting curved shadows on curved surfaces." Since then, it has been used both in pre-rendered and realtime scenes in many console and PC games. Shadows are created by testing whether a pixel is visible from the light source, by comparing the pixel to a z-buffer or depth image of the light source's view, stored in the form of a texture.
Distributed ray tracingDistributed ray tracing, also called distribution ray tracing and stochastic ray tracing, is a refinement of ray tracing that allows for the rendering of "soft" phenomena. Conventional ray tracing uses single rays to sample many different domains. For example, when the color of an object is calculated, ray tracing might send a single ray to each light source in the scene. This leads to sharp shadows, since there is no way for a light source to be partially occluded (another way of saying this is that all lights are point sources and have zero area).
Image and object order renderingIn computer graphics, image order algorithms iterate over the pixels in the image to be produced, rather than the elements in the scene to be rendered. Object order algorithms are those that iterate over the elements in the scene to be rendered, rather than the pixels in the image to be produced. For typical rendering applications, the scene contains many fewer elements (e.g. geometric primitives) than image pixels. In those cases, object order algorithms are usually most efficient (e.g. scan conversion or shear warp).
Rendering equationIn computer graphics, the rendering equation is an integral equation in which the equilibrium radiance leaving a point is given as the sum of emitted plus reflected radiance under a geometric optics approximation. It was simultaneously introduced into computer graphics by David Immel et al. and James Kajiya in 1986. The various realistic rendering techniques in computer graphics attempt to solve this equation. The physical basis for the rendering equation is the law of conservation of energy.
Metropolis light transportMetropolis light transport (MLT) is a global illumination application of a variant of the Monte Carlo method called the Metropolis–Hastings algorithm to the rendering equation for generating images from detailed physical descriptions of three-dimensional scenes. The procedure constructs paths from the eye to a light source using bidirectional path tracing, then constructs slight modifications to the path. Some careful statistical calculation (the Metropolis algorithm) is used to compute the appropriate distribution of brightness over the image.
AutodeskAutodesk, Inc. is an American multinational software corporation that makes software products and services for the architecture, engineering, construction, manufacturing, media, education, and entertainment industries. Autodesk is headquartered in San Francisco, California, and has offices worldwide. Its U.S. offices are located in the states of California, Oregon, Colorado, Texas, Michigan, New Hampshire and Massachusetts. Its Canada offices are located in the provinces of Ontario, Quebec, and Alberta.
Scanline renderingScanline rendering (also scan line rendering and scan-line rendering) is an algorithm for visible surface determination, in 3D computer graphics, that works on a row-by-row basis rather than a polygon-by-polygon or pixel-by-pixel basis. All of the polygons to be rendered are first sorted by the top y coordinate at which they first appear, then each row or scan line of the image is computed using the intersection of a scanline with the polygons on the front of the sorted list, while the sorted list is updated to discard no-longer-visible polygons as the active scan line is advanced down the picture.