Polynomial ringIn mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers.
Ramification (mathematics)In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping. Branch point In complex analysis, the basic model can be taken as the z → zn mapping in the complex plane, near z = 0.
Power seriesIn mathematics, a power series (in one variable) is an infinite series of the form where an represents the coefficient of the nth term and c is a constant. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, c (the center of the series) is equal to zero, for instance when considering a Maclaurin series.
Characteristic (algebra)In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, char(R) is the smallest positive number n such that: if such a number n exists, and 0 otherwise.
Taylor seriesIn mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the mid-18th century.
Radius of convergenceIn mathematics, the radius of convergence of a power series is the radius of the largest disk at the center of the series in which the series converges. It is either a non-negative real number or . When it is positive, the power series converges absolutely and uniformly on compact sets inside the open disk of radius equal to the radius of convergence, and it is the Taylor series of the analytic function to which it converges.