Macromolecular docking is the computational modelling of the quaternary structure of complexes formed by two or more interacting biological macromolecules. Protein–protein complexes are the most commonly attempted targets of such modelling, followed by protein–nucleic acid complexes.
The ultimate goal of docking is the prediction of the three-dimensional structure of the macromolecular complex of interest as it would occur in a living organism. Docking itself only produces plausible candidate structures. These candidates must be ranked using methods such as scoring functions to identify structures that are most likely to occur in nature.
The term "docking" originated in the late 1970s, with a more restricted meaning; then, "docking" meant refining a model of a complex structure by optimizing the separation between the interactors but keeping their relative orientations fixed. Later, the relative orientations of the interacting partners in the modelling was allowed to vary, but the internal geometry of each of the partners was held fixed. This type of modelling is sometimes referred to as "rigid docking". With further increases in computational power, it became possible to model changes in internal geometry of the interacting partners that may occur when a complex is formed. This type of modelling is referred to as "flexible docking".
The biological roles of most proteins, as characterized by which other macromolecules they interact with, are known at best incompletely. Even those proteins that participate in a well-studied biological process (e.g., the Krebs cycle) may have unexpected interaction partners or functions which are unrelated to that process.
In cases of known protein–protein interactions, other questions arise. Genetic diseases (e.g., cystic fibrosis) are known to be caused by misfolded or mutated proteins, and there is a desire to understand what, if any, anomalous protein–protein interactions a given mutation can cause.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Presentation of selected signalling pathways with emphasis on both the mechanism of action of the molecules involved, molecular interactions and the role of their spatio-temporal organization within t
Homology modeling, also known as comparative modeling of protein, refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental three-dimensional structure of a related homologous protein (the "template"). Homology modeling relies on the identification of one or more known protein structures likely to resemble the structure of the query sequence, and on the production of an alignment that maps residues in the query sequence to residues in the template sequence.
Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its secondary and tertiary structure from primary structure. Structure prediction is different from the inverse problem of protein design. Protein structure prediction is one of the most important goals pursued by computational biology; and it is important in medicine (for example, in drug design) and biotechnology (for example, in the design of novel enzymes).
Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that occur in a cell or in a living organism in a specific biomolecular context. Proteins rarely act alone as their functions tend to be regulated.
In the domain of computational structural biology, predicting protein interactions based on molecular structure remains a pivotal challenge. This thesis delves into this challenge through a series of interconnected studies.The first chapter introduces the ...
Proteins, the central building blocks of life, play pivotal roles in nearly every biological function. To do so, these macromolecular structures interact with their surrounding environment in complex ways, leading to diverse functional behaviors. The predi ...
Author summaryWhen two protein families interact, their sequences feature statistical dependencies. First, interacting proteins tend to share a common evolutionary history. Second, maintaining structure and interactions through the course of evolution yiel ...