The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal–dual methods. It was developed and published in 1955 by Harold Kuhn, who gave the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians: Dénes Kőnig and Jenő Egerváry. James Munkres reviewed the algorithm in 1957 and observed that it is (strongly) polynomial. Since then the algorithm has been known also as the Kuhn–Munkres algorithm or Munkres assignment algorithm. The time complexity of the original algorithm was , however Edmonds and Karp, and independently Tomizawa noticed that it can be modified to achieve an running time. One of the most popular variants is the Jonker–Volgenant algorithm. Ford and Fulkerson extended the method to general maximum flow problems in form of the Ford–Fulkerson algorithm. In 2006, it was discovered that Carl Gustav Jacobi had solved the assignment problem in the 19th century, and the solution had been published posthumously in 1890 in Latin. Assignment problem In this simple example, there are three workers: Alice, Bob and Dora. One of them has to clean the bathroom, another sweep the floors and the third washes the windows, but they each demand different pay for the various tasks. The problem is to find the lowest-cost way to assign the jobs. The problem can be represented in a matrix of the costs of the workers doing the jobs. For example: {| class="wikitable" style="text-align:center;" ! ! Cleanbathroom ! Sweepfloors
! Wash windows |
---|
! Alice |
$8 |
$4 |
$7 |
- |
! Bob |
$5 |
$2 |
$3 |
- |
! Dora |
$9 |
$4 |
$8 |
} |
The Hungarian method, when applied to the above table, would give the minimum cost: this is $15, achieved by having Alice clean the bathroom, Dora sweep the floors, and Bob wash the windows. |
Adam Teodor Polak, Alexandra Anna Lassota
Buddhima Ruwanmini Gamlath Gamlath Ralalage