Concept

Speaker wire

Speaker wire is used to make the electrical connection between loudspeakers and audio amplifiers. Modern speaker wire consists of two or more electrical conductors individually insulated by plastic (such as PVC, PE or Teflon) or, less commonly, rubber. The two wires are electrically identical, but are marked to identify the correct audio signal polarity. Most commonly, speaker wire comes in the form of zip cord. The effect of speaker wire upon the signal it carries has been a much-debated topic in the audiophile and high fidelity worlds. The accuracy of many advertising claims on these points has been disputed by expert engineers who emphasize that simple electrical resistance is by far the most important characteristic of speaker wire. Early speaker cable was typically stranded copper wire, insulated with cloth tape, waxed paper or rubber. For portable applications, common lampcord was used, twisted in pairs for mechanical reasons. Cables were often soldered in place at one end. Other terminations were binding posts, terminal strips, and spade lugs for crimp connections. Two-conductor 1⁄4-inch tip-sleeve phone jacks came into use in the 1920s and '30s as convenient terminations. Some early speaker cable designs featured another pair of wires for rectified direct current to supply electrical power for an electromagnet in the loudspeaker. Essentially all speakers manufactured now use permanent magnets, a practice which displaced field electromagnet speakers in the 1940s and 1950s. Speaker wire is a passive electrical component described by its electrical impedance, Z. The impedance can be broken up into three properties which determine its performance: the real part of the impedance, or the resistance, and the imaginary component of the impedance: capacitance or inductance. The ideal speaker wire has no resistance, capacitance, or inductance. The shorter and thicker a wire is, the lower is its resistance, as the electrical resistance of a wire is proportional to its length and inversely proportional to its cross-sectional area (except superconductors).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.