Stellated truncated hexahedronIn geometry, the stellated truncated hexahedron (or quasitruncated hexahedron, and stellatruncated cube) is a uniform star polyhedron, indexed as U19. It has 14 faces (8 triangles and 6 octagrams), 36 edges, and 24 vertices. It is represented by Schläfli symbol t'{4,3} or t{4/3,3}, and Coxeter-Dynkin diagram, . It is sometimes called quasitruncated hexahedron because it is related to the truncated cube, , except that the square faces become inverted into {8/3} octagrams.
Octagonal prismIn geometry, the octagonal prism is the sixth in an infinite set of prisms, formed by rectangular sides and two regular octagon caps. If faces are all regular, it is a semiregular polyhedron. The octagonal prism can also be seen as a tiling on a sphere: In optics, octagonal prisms are used to generate flicker-free images in movie projectors.
Pseudo great rhombicuboctahedronIn geometry, the pseudo great rhombicuboctahedron is one of the two pseudo uniform polyhedra, the other being the convex elongated square gyrobicupola or pseudo rhombicuboctahedron. It has the same vertex figure as the nonconvex great rhombicuboctahedron (a uniform polyhedron), but is not a uniform polyhedron (due to not being isogonal), and has a smaller symmetry group. It can be obtained from the great rhombicuboctahedron by taking a square face and the 8 faces with a common vertex to it (forming a crossed square cupola) and rotating them by an angle of .
List of uniform polyhedraIn geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry. Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both.
Triangular orthobicupolaIn geometry, the triangular orthobicupola is one of the Johnson solids (J_27). As the name suggests, it can be constructed by attaching two triangular cupolas (J_3) along their bases. It has an equal number of squares and triangles at each vertex; however, it is not vertex-transitive. It is also called an anticuboctahedron, twisted cuboctahedron or disheptahedron. It is also a canonical polyhedron. The triangular orthobicupola is the first in an infinite set of orthobicupolae.
Chamfer (geometry)In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion, moving faces apart and outward, but also maintains the original vertices. For polyhedra, this operation adds a new hexagonal face in place of each original edge. In Conway polyhedron notation it is represented by the letter c. A polyhedron with e edges will have a chamfered form containing 2e new vertices, 3e new edges, and e new hexagonal faces.