Univalent functionIn mathematics, in the branch of complex analysis, a holomorphic function on an open subset of the complex plane is called univalent if it is injective. The function is univalent in the open unit disc, as implies that . As the second factor is non-zero in the open unit disc, must be injective. One can prove that if and are two open connected sets in the complex plane, and is a univalent function such that (that is, is surjective), then the derivative of is never zero, is invertible, and its inverse is also holomorphic.
Carathéodory's theorem (conformal mapping)In mathematics, Carathéodory's theorem is a theorem in complex analysis, named after Constantin Carathéodory, which extends the Riemann mapping theorem. The theorem, first proved in 1913, states that any conformal mapping sending the unit disk to some region in the complex plane bounded by a Jordan curve extends continuously to a homeomorphism from the unit circle onto the Jordan curve. The result is one of Carathéodory's results on prime ends and the boundary behaviour of univalent holomorphic functions.
Unit diskIn mathematics, the open unit disk (or disc) around P (where P is a given point in the plane), is the set of points whose distance from P is less than 1: The closed unit disk around P is the set of points whose distance from P is less than or equal to one: Unit disks are special cases of disks and unit balls; as such, they contain the interior of the unit circle and, in the case of the closed unit disk, the unit circle itself. Without further specifications, the term unit disk is used for the open unit disk about the origin, , with respect to the standard Euclidean metric.
Bernhard RiemannGeorg Friedrich Bernhard Riemann (ˈɡeːɔʁk ˈfʁiːdʁɪç ˈbɛʁnhaʁt ˈʁiːman; 17 September 1826 – 20 July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis.
Simply connected spaceIn topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the space) into any other such path while preserving the two endpoints in question. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial.
Annulus (mathematics)In mathematics, an annulus (plural annuli or annuluses) is the region between two concentric circles. Informally, it is shaped like a ring or a hardware washer. The word "annulus" is borrowed from the Latin word anulus or annulus meaning 'little ring'. The adjectival form is annular (as in annular eclipse). The open annulus is topologically equivalent to both the open cylinder S1 × (0,1) and the punctured plane.
Geometric function theoryGeometric function theory is the study of geometric properties of analytic functions. A fundamental result in the theory is the Riemann mapping theorem. The following are some of the most important topics in geometric function theory: Conformal map A conformal map is a function which preserves angles locally. In the most common case the function has a domain and range in the complex plane. More formally, a map, with is called conformal (or angle-preserving) at a point if it preserves oriented angles between curves through with respect to their orientation (i.
Domain (mathematical analysis)In mathematical analysis, a domain or region is a non-empty connected open set in a topological space, in particular any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function, but in general, functions may be defined on sets that are not topological spaces.