Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion (ex falso quodlibet), and therefore holding neither of the following two derivations as valid: where and are any propositions. Most constructive logics only reject the former, the law of excluded middle. In classical logic, the ex falso laws as well as their variants with and switched, are equivalent to each other and valid. Minimal logic also rejects those principles. Minimal logic is axiomatized over the positive fragment of intuitionistic logic. Both of these logics may be formulated in the language using the same axioms for implication , conjunction and disjunction as the basic connectives, but Minimal Logic adds falsum or absurdity as part of the language. Alternatively, direct axioms for negation are discussed below. Here only theorems not already provable in the positive calculus are covered. A quick analysis of implication and negation laws gives a good indication of what this logic, lacking full explosion, can and cannot prove. A natural statement in a language with negation, such as Minimal logic, is, for example, the principle of negation introduction, whereby the negation of a statement is proven by assuming it and deriving a contradiction. Formally, this may be expressed as, for any two propositions, For taken as the contradiction itself, this establishes the law of non-contradiction Assuming any , the introduction rule of the material conditional gives , also when and are not relevantly related. With this and implication elimination, the above introduction principle implies i.e. assuming any contradiction, every proposition can be negated. Negation introduction is possible in minimal logic, so here a contradiction moreover proves every double negation . Explosion would permit to remove the latter double negation, but this principle is not adopted.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MATH-381: Mathematical logic
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
Related concepts (8)
Constructive set theory
Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories. In addition to rejecting the principle of excluded middle (), constructive set theories often require some logical quantifiers in their axioms to be set bounded, motivated by results tied to impredicativity.
Paraconsistent logic
A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic which reject the principle of explosion. Inconsistency-tolerant logics have been discussed since at least 1910 (and arguably much earlier, for example in the writings of Aristotle); however, the term paraconsistent ("beside the consistent") was first coined in 1976, by the Peruvian philosopher Francisco Miró Quesada Cantuarias.
Principle of explosion
In classical logic, intuitionistic logic and similar logical systems, the principle of explosion (ex falso [sequitur] quodlibet, 'from falsehood, anything [follows]'; or ex contradictione [sequitur] quodlibet), or the principle of Pseudo-Scotus (falsely attributed to Duns Scotus), is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition (including its negation) can be inferred from it; this is known as deductive explosion.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.