Concept

György Hajós

György Hajós (February 21, 1912, Budapest – March 17, 1972, Budapest) was a Hungarian mathematician who worked in group theory, graph theory, and geometry. Hajós was born February 21, 1912, in Budapest; his great-grandfather, Adam Clark, was the famous Scottish engineer who built the Chain Bridge in Budapest. He earned a teaching degree from the University of Budapest in 1935. He then took a position at the Technical University of Budapest, where he stayed from 1935 to 1949. While at the Technical University of Budapest, he earned a doctorate in 1938. He became a professor at the Eötvös Loránd University in 1949 and remained there until his death in 1972. Additionally he was president of the János Bolyai Mathematical Society from 1963 to 1972. Hajós's theorem is named after Hajós, and concerns factorizations of Abelian groups into Cartesian products of subsets of their elements. This result in group theory has consequences also in geometry: Hajós used it to prove a conjecture of Hermann Minkowski that, if a Euclidean space of any dimension is tiled by hypercubes whose positions form a lattice, then some pair of hypercubes must meet face-to-face. Hajós used similar group-theoretic methods to attack Keller's conjecture on whether cube tilings (without the lattice constraint) must have pairs of cubes that meet face to face; his work formed an important step in the eventual disproof of this conjecture. Hajós's conjecture is a conjecture made by Hajós that every graph with chromatic number k contains a subdivision of a complete graph Kk. However, it is now known to be false: in 1979, Paul A. Catlin found a counterexample for k = 8, and Paul Erdős and Siemion Fajtlowicz later observed that it fails badly for random graphs. The Hajós construction is a general method for constructing graphs with a given chromatic number, also due to Hajós. Hajós was a member of the Hungarian Academy of Sciences, first as a corresponding member beginning in 1948 and then as a full member in 1958.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.