A ramjet, or athodyd (aero thermodynamic duct), is a form of airbreathing jet engine that uses the forward motion of the engine to take in air for combustion that produces jet thrust. Since it produces no thrust when stationary (no ram air) ramjet-powered vehicles require an assisted take-off like a rocket assist to accelerate it to a speed where it begins to produce thrust. Ramjets work most efficiently at supersonic speeds around and can operate up to speeds of .
Ramjets can be particularly useful in applications requiring a small and simple mechanism for high-speed use, such as missiles. The US, Canada, and UK had widespread ramjet powered missile defenses during the 1960s onward, such as the CIM-10 Bomarc and Bloodhound. At present weapon designers are investigating the use ramjet technology in artillery shells to give added range; a 120 mm mortar shell, if assisted by a ramjet, is thought to be able to attain a range of . They have also been used successfully, though not efficiently, as tip jets on the ends of helicopter rotors.
Ramjets differ from pulsejets, which use an intermittent combustion; ramjets employ a continuous combustion process.
As speed increases, the thermal tfficiency of a ramjet decreases as the air temperature in the inlet increases. This is because as the Ramjet intake structure must accelerate the air entering it to subsonic speed relative to the engine internals. As the speed increases, doing so requires more work to be done on the incoming air to accelerate it, causing its density and temperature to significantly increase. As the difference between the engine inlet temperature and the exhaust gas temperature decreases, less useful energy can be extracted in the form of thrust, relative to the induced drag of the inlet. Meanwhile, if altitude and ambient air conditions are assumed to be the same, then higher speeds produce greater mass flow rate through the engine, therefore fuel flow must be increased to maintain sufficient exhaust temperature to offset ram drag incurred thereby.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In aerodynamics, a hypersonic speed is one that exceeds five times the speed of sound, often stated as starting at speeds of Mach 5 and above. The precise Mach number at which a craft can be said to be flying at hypersonic speed varies, since individual physical changes in the airflow (like molecular dissociation and ionization) occur at different speeds; these effects collectively become important around Mach 5-10.
A scramjet (supersonic combustion ramjet) is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion (hence ramjet), but whereas a ramjet decelerates the air to subsonic velocities before combustion using shock cones, a scramjet has no shock cone and slows the airflow using shockwaves produced by its ignition source in place of a shock cone.
Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry. Several methods of pragmatic spacecraft propulsion have been developed, each having its own drawbacks and advantages. Most satellites have simple reliable chemical thrusters (often monopropellant rockets) or resistojet rockets for orbital station-keeping and some use momentum wheels for attitude control.
In recent years, considerable interest has been devoted to the interactions between cavitation bubbles and tissue-mimicking materials due to their promising applications in medicine and biomedical sciences. The strong fluid-structure interaction between a ...
We investigate the gas-phase structure of the neutral pentaalanine peptide. The IR spectrum in the 340-1820 cm-1 frequency range is obtained by employing supersonic jet cooling, infrared multiphoton dissociation, and vacuum-ultraviolet action spectroscopy. ...
The invention discloses systems and methods for generation of microfluidic jets providing a tool for very precise and localized delivery of e.g., medicaments. The proposed solution overcomes shortcomings related to miniaturization of a jet injection techno ...