Population momentum is a consequence of the demographic transition. Population momentum explains why a population will continue to grow even if the fertility rate declines. Population momentum occurs because it is not only the number of children per woman that determine population growth, but also the number of women in reproductive age. Eventually, when the fertility rate reaches the replacement rate and the population size of women in the reproductive age bracket stabilizes, the population achieves equilibrium and population momentum comes to an end. Population momentum is defined as the ratio of the size of the population at that new equilibrium level to the size of the initial population. Population momentum usually occurs in populations that are growing. Assume that a population has three generations: First (oldest), Second (child bearing), and Third (children). Further assume that this population has a fertility rate equal to four (4). That is, each generation is twice the size of the previous. If the population of the first generation is arbitrarily set at 100, the second is then 200, and the third is 400. The spreadsheet below shows the initial population in the first row. First note that the second and third generation of the initial population are each twice the size of the previous. The total of the initial population is 700 = 100 + 200 + 400. Then assume that at the end of the third generation, fertility falls to replacement (for simplicity assume that to be two). Now take the population forward in time to the next generation, line two of the spreadsheet. The first generation dies, and the new generation, the fourth, is equal to the third (because now fertility is replacement). Repeat the process again to reach the fifth generation (line 3 in the spreadsheet). The fifth generation is again equal to the fourth and now the population’s three generations are equal, and the population has reached equilibrium. The initial population has grown from 700 to 1,200 even though fertility dropped from four to replacement (two) at the end of the third generation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
HUM-471: Economic growth and sustainability I
This course examines growth from various angles: economic growth, growth in the use of resources, need for growth, limits to growth, sustainable growth, and, if time permits, population growth and gro
ENV-613: Human population dynamics: social & environmental
Continuing growth of the human population (80 million/year for each of the past 50 years) is often cited as responsible for many environmental and social problems. We will examine the dynamics of popu
Related lectures (11)
Urbanization & Population Growth
Explores future urban population growth, environmental impact, and demographic transition.
Demographics: Population Growth and Determinants
Explores the recent explosion of the world's population, demographic changes, and the theories of Reverend Malthus.
Fermented Foods: Microbial Transformations and Health Benefits
Explores the microbial transformations and health benefits of fermented foods, emphasizing their potential as delivery vehicles for probiotics to underserved communities.
Show more
Related publications (47)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.