Summary
In quantum mechanics, energy is defined in terms of the energy operator, acting on the wave function of the system as a consequence of time translation symmetry. It is given by: It acts on the wave function (the probability amplitude for different configurations of the system) The energy operator corresponds to the full energy of a system. The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of this equation for a bound system is discrete (a set of permitted states, each characterized by an energy level) which results in the concept of quanta. Using the energy operator to the Schrödinger equation: can be obtained: where i is the imaginary unit, ħ is the reduced Planck constant, and is the Hamiltonian operator. Working from the definition, a partial solution for a wavefunction of a particle with a constant energy can be constructed. If the wavefunction is assumed to be separable, then the time dependence can be stated as , where E is the constant energy. In full, where is the partial solution of the wavefunction dependent on position. Applying the energy operator, we have This is also known as the stationary state, and can be used to analyse the time-independent Schrödinger equation: where E is an eigenvalue of energy. The relativistic mass-energy relation: where again E = total energy, p = total 3-momentum of the particle, m = invariant mass, and c = speed of light, can similarly yield the Klein–Gordon equation: where is the momentum operator. That is: The energy operator is easily derived from using the free particle wave function (plane wave solution to Schrödinger's equation). Starting in one dimension the wave function is The time derivative of Ψ is By the De Broglie relation: we have Re-arranging the equation leads to where the energy factor E is a scalar value, the energy the particle has and the value that is measured.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (10)
Quantum Mechanics: Principles and Wave Functions
Explores quantum mechanics principles, wave functions, energy quantization, and particle confinement in a box.
Hydrogen-like Atom: Quantum Mechanics
Explores the theoretical aspects of the hydrogen-like atom in quantum mechanics.
Linear Operators: Motivation in Quantum Mechanics
Explores the motivation for studying linear operators in Quantum Mechanics, emphasizing their essential role and practical applications.
Show more
Related publications (10)
Related concepts (3)
Momentum operator
In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is Planck's reduced constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative (denoted by ) is used instead of a total derivative (d/dx) since the wave function is also a function of time. The "hat" indicates an operator.
Four-vector
In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the (1/2,1/2) representation. It differs from a Euclidean vector in how its magnitude is determined.
Relativistic wave equations
In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT.