In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial. It was developed in the late 1990s by Mikhail Khovanov, then at the University of California, Davis, now at Columbia University. To any link diagram D representing a link L, we assign the Khovanov bracket [D], a cochain complex of graded vector spaces. This is the analogue of the Kauffman bracket in the construction of the Jones polynomial. Next, we normalise [D] by a series of degree shifts (in the graded vector spaces) and height shifts (in the cochain complex) to obtain a new cochain complex C(D). The cohomology of this cochain complex turns out to be an invariant of L, and its graded Euler characteristic is the Jones polynomial of L. This definition follows the formalism given in Dror Bar-Natan's 2002 paper. Let {l} denote the degree shift operation on graded vector spaces—that is, the homogeneous component in dimension m is shifted up to dimension m + l. Similarly, let [s] denote the height shift operation on cochain complexes—that is, the rth vector space or module in the complex is shifted along to the (r + s)th place, with all the differential maps being shifted accordingly. Let V be a graded vector space with one generator q of degree 1, and one generator q−1 of degree −1. Now take an arbitrary diagram D representing a link L. The axioms for the Khovanov bracket are as follows: [ø] = 0 → Z → 0, where ø denotes the empty link. [O D] = V ⊗ [D], where O denotes an unlinked trivial component. [D] = F(0 → [D0] → [D1]{1} → 0) In the third of these, F denotes the flattening' operation, where a single complex is formed from a double complex by taking direct sums along the diagonals. Also, D0 denotes the 0-smoothing' of a chosen crossing in D, and D1 denotes the 1-smoothing', analogously to the skein relation for the Kauffman bracket. Next, we construct the normalised' complex C(D) = [D][−n−]{n+ − 2n−}, where n− denotes the number of left-handed crossings in the chosen diagram for D, and n+ the number of right-handed crossings.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)
Related concepts (3)
Floer homology
In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold.
Alexander polynomial
In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984.
Knot invariant
In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a knot invariant is a rule that assigns to any knot K a quantity φ(K) such that if K and are equivalent then φ(K) = φ().

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.