Related publications (157)

Towards Trustworthy Deep Learning for Image Reconstruction

Alexis Marie Frederic Goujon

The remarkable ability of deep learning (DL) models to approximate high-dimensional functions from samples has sparked a revolution across numerous scientific and industrial domains that cannot be overemphasized. In sensitive applications, the good perform ...
EPFL2024

Enabling Uncertainty Estimation in Iterative Neural Networks

Pascal Fua, Nikita Durasov, Doruk Oner, Minh Hieu Lê

Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of the ...
2024

GANDALF: Graph-based transformer and Data Augmentation Active Learning Framework with interpretable features for multi-label chest Xray classification

Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the pres ...
Amsterdam2024

Understanding generalization and robustness in modern deep learning

Maksym Andriushchenko

In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...
EPFL2024

InterpretCC: Intrinsic User-Centric Interpretability through Global Mixture of Experts

Martin Jaggi, Vinitra Swamy, Jibril Albachir Frej, Julian Thomas Blackwell

Interpretability for neural networks is a trade-off between three key requirements: 1) faithfulness of the explanation (i.e., how perfectly it explains the prediction), 2) understandability of the explanation by humans, and 3) model performance. Most exist ...
2024

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.