An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic s.
There are three primary types of optical telescope:
Refracting telescopes, which use lenses and less commonly also prisms (dioptrics)
Reflecting telescopes, which use mirrors (catoptrics)
Catadioptric telescopes, which combine lenses and mirrors
An optical telescope's ability to resolve small details is directly related to the diameter (or aperture) of its objective (the primary lens or mirror that collects and focuses the light), and its light-gathering power is related to the area of the objective. The larger the objective, the more light the telescope collects and the finer detail it resolves.
People use optical telescopes (including monoculars and binoculars) for outdoor activities such as observational astronomy, ornithology, pilotage, hunting and reconnaissance, as well as indoor/semi-outdoor activities such as watching performance arts and spectator sports.
The telescope is more a discovery of optical craftsmen than an invention of a scientist. The lens and the properties of refracting and reflecting light had been known since antiquity, and theory on how they worked was developed by ancient Greek philosophers, preserved and expanded on in the medieval Islamic world, and had reached a significantly advanced state by the time of the telescope's invention in early modern Europe. But the most significant step cited in the invention of the telescope was the development of lens manufacture for spectacles, first in Venice and Florence in the thirteenth century, and later in the spectacle making centers in both the Netherlands and Germany. It is in the Netherlands in 1608 where the first documents describing a refracting optical telescope surfaced in the form of a patent filed by spectacle maker Hans Lippershey, followed a few weeks later by claims by Jacob Metius, and a third unknown applicant, that they also knew of this "art".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object (the Moon) was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects outside of the visible spectrum of the human eye such as dim stars, nebulae, and galaxies.
The Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλακτικὸς κύκλος (galaktikòs kýklos), meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within.
Amateur telescope making is the activity of building telescopes as a hobby, as opposed to being a paid professional. Amateur telescope makers (sometimes called ATMs) build their instruments for personal enjoyment of a technical challenge, as a way to obtain an inexpensive or personally customized telescope, or as a research tool in the field of astronomy. Amateur telescope makers are usually a sub-group in the field of amateur astronomy. Ever since Galileo Galilei adapted a Dutch invention for astronomical use, astronomical telescope making has been an evolving discipline.
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.
Introduction to geometrical and wave optics for understanding the principles of optical microscopes, their advantages and limitations. Describing the basic microscopy components and the commonly used
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation
Explores the impact of COVID-19 on astronomy and the European Southern Observatory, delves into the Friedmann equations, and discusses the concept of dark energy.
MALTA is part of the Depleted Monolithic Active Pixel sensors designed in Tower 180 nm CMOS imaging technology. A custom telescope with six MALTA planes has been developed for test beam campaigns at SPS, CERN, with the ability to host several devices under ...
Adaptive optics (AO) systems are used in ground- based telescopes to improve image resolutions, especially for long-exposure photography, by compensating for the effects of atmospheric turbulence and internal vibrations. Most current AO systems are based o ...
2023
, ,
The Pixel Luminosity Telescope is a silicon pixel detector dedicated to luminosity measurement at the CMS experiment at the LHC. It is located approximately 1.75 m from the interaction point and arranged into 16 "telescopes", with eight telescopes installe ...