Transformation geometryIn mathematics, transformation geometry (or transformational geometry) is the name of a mathematical and pedagogic take on the study of geometry by focusing on groups of geometric transformations, and properties that are invariant under them. It is opposed to the classical synthetic geometry approach of Euclidean geometry, that focuses on proving theorems. For example, within transformation geometry, the properties of an isosceles triangle are deduced from the fact that it is mapped to itself by a reflection about a certain line.
Gino FanoGino Fano (5 January 1871 8 November 1952) was an Italian mathematician, best known as the founder of finite geometry. He was born to a wealthy Jewish family in Mantua, in Italy and died in Verona, also in Italy. Fano made various contributions on projective and algebraic geometry. His work in the foundations of geometry predates the similar, but more popular, work of David Hilbert by about a decade. He was the father of physicist Ugo Fano and electrical engineer Robert Fano and uncle to physicist and mathematician Giulio Racah.
János BolyaiJános Bolyai (ˈjaːnoʃ ˈboːjɒi; 15 December 1802 – 27 January 1860) or Johann Bolyai, was a Hungarian mathematician, who developed absolute geometry—a geometry that includes both Euclidean geometry and hyperbolic geometry. The discovery of a consistent alternative geometry that might correspond to the structure of the universe helped to free mathematicians to study abstract concepts irrespective of any possible connection with the physical world.
Lambert quadrilateralIn geometry, a Lambert quadrilateral (also known as Ibn al-Haytham–Lambert quadrilateral), is a quadrilateral in which three of its angles are right angles. Historically, the fourth angle of a Lambert quadrilateral was of considerable interest since if it could be shown to be a right angle, then the Euclidean parallel postulate could be proved as a theorem. It is now known that the type of the fourth angle depends upon the geometry in which the quadrilateral exists.