Concept

Bel decomposition

Summary
In semi-Riemannian geometry, the Bel decomposition, taken with respect to a specific timelike congruence, is a way of breaking up the Riemann tensor of a pseudo-Riemannian manifold into lower order tensors with properties similar to the electric field and magnetic field. Such a decomposition was partially described by Alphonse Matte in 1953 and by Lluis Bel in 1958. This decomposition is particularly important in general relativity. This is the case of four-dimensional Lorentzian manifolds, for which there are only three pieces with simple properties and individual physical interpretations. In four dimensions the Bel decomposition of the Riemann tensor, with respect to a timelike unit vector field , not necessarily geodesic or hypersurface orthogonal, consists of three pieces: the electrogravitic tensor Also known as the tidal tensor. It can be physically interpreted as giving the tidal stresses on small bits of a material object (which may also be acted upon by other physical forces), or the tidal accelerations of a small cloud of test particles in a vacuum solution or electrovacuum solution. the magnetogravitic tensor Can be interpreted physically as a specifying possible spin-spin forces on spinning bits of matter, such as spinning test particles. the topogravitic tensor Can be interpreted as representing the sectional curvatures for the spatial part of a frame field. Because these are all transverse (i.e. projected to the spatial hyperplane elements orthogonal to our timelike unit vector field), they can be represented as linear operators on three-dimensional vectors, or as three-by-three real matrices. They are respectively symmetric, traceless, and symmetric (6,8,6 linearly independent components, for a total of 20). If we write these operators as E, B, L respectively, the principal invariants of the Riemann tensor are obtained as follows: is the trace of E2 + L2 - 2 B BT, is the trace of B ( E - L ), is the trace of E L - B2.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.