An excimer (originally short for excited dimer) is a short-lived dimeric or heterodimeric molecule formed from two species, at least one of which has a valence shell completely filled with electrons (for example, noble gases). In this case, formation of molecules is possible only if such atom is in an electronic excited state. Heteronuclear molecules and molecules that have more than two species are also called exciplex molecules (originally short for excited complex). Excimers are often diatomic and are composed of two atoms or molecules that would not bond if both were in the ground state. The lifetime of an excimer is very short, on the order of nanoseconds.
Under the molecular orbital formalism, a typical ground-state molecule has electrons in the lowest possible energy levels. According to the Pauli principle, at most two electrons can occupy a given orbital, and if an orbital contains two electrons they must be in opposite spin states. The highest occupied molecular orbital is called the HOMO and the lowest unoccupied molecular orbital is called the LUMO; the energy gap between these two states is known as the HOMO–LUMO gap. If the molecule absorbs light whose energy is equal to this gap, an electron in the HOMO may be excited to the LUMO. This is called the molecule's excited state.
Excimers are only formed when one of the dimer components is in the excited state. When the excimer returns to the ground state, its components dissociate and often repel each other. The wavelength of an excimer's emission is longer (smaller energy) than that of the excited monomer's emission. An excimer can thus be measured by fluorescent emissions.
Because excimer formation is dependent on a bimolecular interaction, it is promoted by high monomer density. Low-density conditions produce excited monomers that decay to the ground state before they interact with an unexcited monomer to form an excimer.
The term excimer (excited state dimer) is, strictly speaking, limited to cases in which a true dimer is formed; that is, both components of the dimer are the same molecule or atom.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An excimer laser, sometimes more correctly called an exciplex laser, is a form of ultraviolet laser which is commonly used in the production of microelectronic devices, semiconductor based integrated circuits or "chips", eye surgery, and micromachining. Since 1960s excimer lasers are widely used in high-resolution photolithography machines, one of the critical technologies required for microelectronic chip manufacturing. The term excimer is short for 'excited dimer', while exciplex is short for 'excited complex'.
An excimer lamp (or excilamp) is a source of ultraviolet light based on spontaneous emission of excimer (exciplex) molecules. Excimer lamps are quasimonochromatic light sources operating over a wide range of wavelengths in the ultraviolet (UV) and vacuum ultraviolet (VUV) spectral regions. Operation of an excimer lamp is based on the formation of excited dimers (excimers), which spontaneously transiting from the excited state to the ground state result in the emission of UV-photons.
In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, particularly involving the element xenon. From the standpoint of chemistry, the noble gases may be divided into two groups: the relatively reactive krypton (ionisation energy 14.0 eV), xenon (12.1 eV), and radon (10.7 eV) on one side, and the very unreactive argon (15.
This course presents the theoretical bases of electronic spectroscopy and molecular photophysics. The principles of the reactivity of excited states of molecules and solids under irradiation are detai
The physical principles of laser light materials interactions are introduced with a large number of industrial application examples. Materials processing lasers are developing further and further, the
Interatomic processes play a crucial role in weakly bound complexes exposed to ionizing radiation; therefore, gaining a thorough understanding of their efficiency is of fundamental importance. Here, we directly measure the timescale of interatomic Coulombi ...
Vibrational fingerprints of molecules and lowdimension materials can be traced with subnanometer resolution by performing Tip-enhanced Raman spectroscopy (TERS) in a localization of light in the plasmonic nanocavity of the STM enables high spatial resoluti ...
This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...