Concept

Z-Wave

Z-Wave is a wireless communications protocol used primarily for residential and commercial building automation. It is a mesh network using low-energy radio waves to communicate from device to device, allowing for wireless control of smart home devices, such as smart lights, security systems, thermostats, sensors, smart door locks, and garage door openers. The Z-Wave brand and technology are owned by Silicon Labs. Over 300 companies involved in this technology are gathered within the Z-Wave Alliance. Like other protocols and systems aimed at the residential, commercial, MDU and building markets, a Z-Wave system can be controlled from a smart phone, tablet, or computer, and locally through a smart speaker, wireless keyfob, or wall-mounted panel with a Z-Wave gateway or central control device serving as both the hub or controller. Z-Wave provides the application layer interoperability between home control systems of different manufacturers that are a part of its alliance. There is a growing number of interoperable Z-Wave products; over 1,700 in 2017, over 2,600 by 2019, and over 4,000 by 2022. The Z-Wave protocol was developed by Zensys, a Danish company based in Copenhagen, in 1999. That year, Zensys introduced a consumer light-control system, which evolved into Z-Wave as a proprietary system on a chip (SoC) home automation protocol on an unlicensed frequency band in the 900 MHz range. Its 100 series chip set was released in 2003, and its 200 series was released in May 2005, with the ZW0201 chip offering high performance at a low cost. Its 500 series chip, also known as Z-Wave Plus, was released in March 2013, with four times the memory, improved wireless range, improved battery life, an enhanced S2 security framework, and the SmartStart setup feature. Its 700 series chip was released in 2019, with the ability to communicate up to 100 meters directly from point-to-point, or 800 meters across an entire Z-Wave network, an extended battery life of up to 10 years, and comes with S2 and SmartStart technology.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.