Concept

Hagedorn temperature

The Hagedorn temperature, TH, is the temperature in theoretical physics where hadronic matter (i.e. ordinary matter) is no longer stable, and must either "evaporate" or convert into quark matter; as such, it can be thought of as the "boiling point" of hadronic matter. It was discovered by Rolf Hagedorn. The Hagedorn temperature exists because the amount of energy available is high enough that matter particle (quark–antiquark) pairs can be spontaneously pulled from vacuum. Thus, naively considered, a system at Hagedorn temperature can accommodate as much energy as one can put in, because the formed quarks provide new degrees of freedom, and thus the Hagedorn temperature would be an impassable absolute hot. However, if this phase is viewed as quarks instead, it becomes apparent that the matter has transformed into quark matter, which can be further heated. The Hagedorn temperature, TH, is about 150MeV/kB or about 1.7e12K, little above the mass–energy of the lightest hadrons, the pion. Matter at Hagedorn temperature or above will spew out fireballs of new particles, which can again produce new fireballs, and the ejected particles can then be detected by particle detectors. This quark matter has been detected in heavy-ion collisions at SPS and LHC in CERN (France and Switzerland) and at RHIC in Brookhaven National Laboratory (USA). In string theory, a separate Hagedorn temperature can be defined for strings rather than hadrons. This temperature is extremely high (1030 K) and thus of mainly theoretical interest. The Hagedorn temperature was discovered by German physicist Rolf Hagedorn in the 1960s while working at CERN. His work on the statistical bootstrap model of hadron production showed that because increases in energy in a system will cause new particles to be produced, an increase of collision energy will increase the entropy of the system rather than the temperature, and "the temperature becomes stuck at a limiting value". Hagedorn temperature is the temperature TH above which the partition sum diverges in a system with exponential growth in the density of states.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (8)
Electron-Proton Scattering: Structure Probe
Delves into electron-proton scattering to probe the proton's structure through elastic and deep inelastic processes, form factors, and higher energy interactions.
Damped Harmonic Oscillator
Covers the damped harmonic oscillator in quantum optics, discussing alternative descriptions and extensions like finite temperature.
Damped Harmonic Oscillator
Covers the damped harmonic oscillator in quantum optics, including field amplitude, coherent states, photon numbers, and phase space.
Show more
Related publications (25)

On-the-fly ab initio semiclassical evaluation of vibronic spectra at finite temperature

Jiri Vanicek, Tomislav Begusic

To compute and analyze vibrationally resolved electronic spectra at zero temperature, we have recently implemented the on-the-fly ab initio extended thawed Gaussian approximation [A. Patoz et al., J. Phys. Chem. Lett. 9, 2367 (2018)], which accounts for an ...
2020

Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two $\tau$ leptons and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

Maximum-energy records in glassy energy landscapes

Marco Baity-Jesi, Riccardo Ravasio

We study the evolution of the maximum energy E-max(t) reached between time 0 and time t in the dynamics of simple models with glassy energy landscapes, after an instant quench from infinite temperature to a target temperature T. Through a detailed descript ...
IOP PUBLISHING LTD2019
Show more
Related concepts (5)
Quark–gluon plasma
Quark–gluon plasma (or QGP and quark soup) is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter.
Kelvin
The 'kelvin', symbol K, is a unit of measurement for temperature. The Kelvin scale is an absolute scale, which is defined such that 0 K is absolute zero and a change of thermodynamic temperature T by 1 kelvin corresponds to a change of thermal energy kT by 1.380649e−23J. The Boltzmann constant was exactly defined in the 2019 redefinition of the SI base units such that the triple point of water is 273.16K. The kelvin is the base unit of temperature in the International System of Units (SI), used alongside its prefixed forms.
Melting point
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa. When considered as the temperature of the reverse change from liquid to solid, it is referred to as the freezing point or crystallization point.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.