Structured prediction or structured (output) learning is an umbrella term for supervised machine learning techniques that involves predicting structured objects, rather than scalar discrete or real values. Similar to commonly used supervised learning techniques, structured prediction models are typically trained by means of observed data in which the true prediction value is used to adjust model parameters. Due to the complexity of the model and the interrelations of predicted variables the process of prediction using a trained model and of training itself is often computationally infeasible and approximate inference and learning methods are used. For example, the problem of translating a natural language sentence into a syntactic representation such as a parse tree can be seen as a structured prediction problem in which the structured output domain is the set of all possible parse trees. Structured prediction is also used in a wide variety of application domains including bioinformatics, natural language processing, speech recognition, and computer vision. Sequence tagging is a class of problems prevalent in natural language processing, where input data are often sequences (e.g. sentences of text). The sequence tagging problem appears in several guises, e.g. part-of-speech tagging and named entity recognition. In POS tagging, for example, each word in a sequence must receive a "tag" (class label) that expresses its "type" of word: {| | This

DT
is
VBZ
-
a
DT
-
tagged
JJ
-
sentence
NN
-
.
.
}
The main challenge of this problem is to resolve ambiguity: the word "sentence" can also be a verb in English, and so can "tagged".
While this problem can be solved by simply performing classification of individual tokens, that approach does not take into account the empirical fact that tags do not occur independently; instead, each tag displays a strong conditional dependence on the tag of the previous word.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.