In cellular telecommunications, handover, or handoff, is the process of transferring an ongoing call or data session from one channel connected to the core network to another channel. In satellite communications it is the process of transferring satellite control responsibility from one earth station to another without loss or interruption of service.
American English uses the term handoff, and this is most commonly used within some American organizations such as 3GPP2 and in American originated technologies such as CDMA2000. In British English the term handover is more common, and is used within international and European organisations such as ITU-T, IETF, ETSI and 3GPP, and standardised within European originated standards such as GSM and UMTS. The term handover is more common in academic research publications and literature, while handoff is slightly more common within the IEEE and ANSI organisations.
In telecommunications there may be different reasons why a handover might be conducted:
when the phone is moving away from the area covered by one cell and entering the area covered by another cell the call is transferred to the second cell in order to avoid call termination when the phone gets outside the range of the first cell;
when the capacity for connecting new calls of a given cell is used up and an existing or new call from a phone, which is located in an area overlapped by another cell, is transferred to that cell in order to free-up some capacity in the first cell for other users, who can only be connected to that cell;
in non-CDMA networks when the channel used by the phone becomes interfered by another phone using the same channel in a different cell, the call is transferred to a different channel in the same cell or to a different channel in another cell in order to avoid the interference;
again in non-CDMA networks when the user behaviour changes, e.g.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The base station subsystem (BSS) is the section of a traditional cellular telephone network which is responsible for handling traffic and signaling between a mobile phone and the network switching subsystem. The BSS carries out transcoding of speech channels, allocation of radio channels to mobile phones, paging, transmission and reception over the air interface and many other tasks related to the radio network.
In a telecommunications network, a link is a communication channel that connects two or more devices for the purpose of data transmission. The link may be a dedicated physical link or a virtual circuit that uses one or more physical links or shares a physical link with other telecommunications links. A telecommunications link is generally based on one of several types of information transmission paths such as those provided by communication satellites, terrestrial radio communications infrastructure and computer networks to connect two or more points.
Network switching subsystem (NSS) (or GSM core network) is the component of a GSM system that carries out call out and mobility management functions for mobile phones roaming on the network of base stations. It is owned and deployed by mobile phone operators and allows mobile devices to communicate with each other and telephones in the wider public switched telephone network (PSTN). The architecture contains specific features and functions which are needed because the phones are not fixed in one location.
Students extend their knowledge on wireless communication systems to spread-spectrum communication and to multi-antenna systems. They also learn about the basic information theoretic concepts, about c
The emerging 5G mobile network technology is envisioned to provide an efficient platform to interconnect machines, objects, and devices in addition to interconnecting people. Equipped with peak data rates, low latency, and massive capacity, 5G technology w ...
The integration of technology in the medical field has greatly improved accuracy in diagnoses, thus leading to more effective treatments. Wearable and implantable medical devices offer great potential for remote patient monitoring, particularly for heart f ...
Bringing cellular capacity into modern trains is challenging because they act as Faraday cages. Building a radio frequency (RF) corridor along the railway tracks ensures a high signal-to-noise ratio and limits handovers. However, building such RF corridors ...