ObjectiveProton beam therapy is considered, by some authors, as having the advantage of delivering dose distributions more conformal to target compared with stereotactic radiosurgery (SRS). Here, we performed a systematic review and meta-analysis of proton ...
Hadron therapy refers to a medical treatment that uses hadron beams (i.e. protons and ions) to deliver localized energy that suppresses cancerous cells, sparing the neighbouring healthy tissues from unwanted radiation. The major technical components of a h ...
EPFL2021
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Controlling and shaping radiation beams is fundamental for a better understanding of radiation-matter interaction and advancing experimental techniques for material characterization at high spatial resolution.In particular, the current trend in the miniatu ...
IMPACT (Isotope and Muon Production with Advanced Cyclotron and Target Technologies) is a proposed initiative envisaged for the high-intensity proton accelerator facility (HIPA) at the Paul Scherrer Institute (PSI). As part of IMPACT, a radioisotope target ...
IMPACT (Isotope and Muon Production with Advanced Cyclotron and Target Technologies) is a proposed initia- tive envisaged for the high-intensity proton accelerator fa- cility (HIPA) at the Paul Scherrer Institute (PSI). As part of IMPACT, a radioisotope ta ...
The production of radioisotope beams at the ISOLDE (Isotope Separator OnLine DEvice) facility at CERN is achieved by irradiating target materials (e.g. uranium carbides and metal foils) with protons. The materials are usually operated at temperatures above ...
The use of carbon ions in particle therapy can enhance the treatment quality, introducing higher biological effectiveness compared to photons and protons. Rotating gantries are nowadays used to deliver particle beams from different directions to obtain pre ...
SPIDER is the negative ion source testbed for ITER neutral beam injector. It is currently the largest negative ion source ever built, equipped with a 100 keV accelerator, aiming at producing a negative ion beam with an extracted current density in hydrogen ...
BackgroundThe increasing use of complex and high dose-rate treatments in radiation therapy necessitates advanced detectors to provide accurate dosimetry. Rather than relying on pre-treatment quality assurance (QA) measurements alone, many countries are now ...
Collective guidance of out-of-equilibrium systems without using external fields is a challenge of paramount importance in active matter, ranging from bacterial colonies to swarms of self-propelled particles. Designing strategies to guide active matter and ...