In mathematics, and more specifically in the theory of von Neumann algebras, a crossed product is a basic method of constructing a new von Neumann algebra from a von Neumann algebra acted on by a group. It is related to the semidirect product construction for groups. (Roughly speaking, crossed product is the expected structure for a group ring of a semidirect product group. Therefore crossed products have a ring theory aspect also. This article concentrates on an important case, where they appear in functional analysis.) Recall that if we have two finite groups and N with an action of G on N we can form the semidirect product . This contains N as a normal subgroup, and the action of G on N is given by conjugation in the semidirect product. We can replace N by its complex group algebra C[N], and again form a product in a similar way; this algebra is a sum of subspaces gC[N] as g runs through the elements of G, and is the group algebra of . We can generalize this construction further by replacing C[N] by any algebra A acted on by G to get a crossed product which is the sum of subspaces gA and where the action of G on A is given by conjugation in the crossed product. The crossed product of a von Neumann algebra by a group G acting on it is similar except that we have to be more careful about topologies, and need to construct a Hilbert space acted on by the crossed product. (Note that the von Neumann algebra crossed product is usually larger than the algebraic crossed product discussed above; in fact it is some sort of completion of the algebraic crossed product.) In physics, this structure appears in presence of the so called gauge group of the first kind. G is the gauge group, and N the "field" algebra. The observables are then defined as the fixed points of N under the action of G. A result by Doplicher, Haag and Roberts says that under some assumptions the crossed product can be recovered from the algebra of observables. Suppose that A is a von Neumann algebra of operators acting on a Hilbert space H and G is a discrete group acting on A.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.