Summary
In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively charged sodium ions and negatively charged chloride ions. The component ions in a salt compound can be either inorganic, such as chloride (Cl−), or organic, such as acetate (CH3COO−). Each ion can be either monatomic, such as fluoride (F−), or polyatomic, such as sulfate (SO42−). Salts can be classified in a variety of ways. Salts that produce hydroxide ions when dissolved in water are called alkali salts and salts that produce hydrogen ions when dissolved in water are called acid salts. Neutral salts are those salts that are neither acidic nor alkaline. Zwitterions contain an anionic and a cationic centre in the same molecule, but are not considered salts. Examples of zwitterions are amino acids, many metabolites, peptides, and proteins. Solid salts tend to be transparent, as illustrated by sodium chloride. In many cases, the apparent opacity or transparency are only related to the difference in size of the individual monocrystals. Since light reflects from the grain boundaries (boundaries between crystallites), larger crystals tend to be transparent, while the polycrystalline aggregates look like opaque powders or masses. Salts exist in many different colors, which arise either from their constituent anions, cations or solvates. For example: sodium chromate is made yellow by the chromate ion potassium dichromate is made orange by the dichromate ion cobalt nitrate is made red by the chromophore of hydrated cobalt(II) ([Co(H2O)6]2+). copper sulfate is made blue by the copper(II) chromophore potassium permanganate is made violet by the permanganate anion. nickel chloride is typically made green by the hydrated nickel(II) chloride [NiCl2(H2O)4] sodium chloride, magnesium sulfate heptahydrate appear colorless or white because the constituent cations and anions do not absorb light in the part of the spectrum that is visible to humans.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)
Related concepts (209)
Ion
An ion (ˈaɪ.ɒn,_-ən) is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons. A cation is a positively charged ion with fewer electrons than protons while an anion is a negatively charged ion with more electrons than protons.
Salt (chemistry)
In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively charged sodium ions and negatively charged chloride ions. The component ions in a salt compound can be either inorganic, such as chloride (Cl−), or organic, such as acetate (CH3COO−). Each ion can be either monatomic, such as fluoride (F−), or polyatomic, such as sulfate (SO42−).
Sodium
Sodium is a chemical element with the symbol Na (from Latin natrium) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope is 23Na. The free metal does not occur in nature and must be prepared from compounds. Sodium is the sixth most abundant element in the Earth's crust and exists in numerous minerals such as feldspars, sodalite, and halite (NaCl).
Show more
Related courses (53)
MICRO-390: Light, liquids and interfaces
This course provides an overview of relevant interactions in liquids, combining thermodynamics, statistical physics and pair potetnials. Water and aqueos systm,es will be considered in detail. Optical
ENV-200: Environmental chemistry
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
CH-160(e): Advanced general chemistry
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Show more