Corona treatment (sometimes referred to as air plasma) is a surface modification technique that uses a low temperature corona discharge plasma to impart changes in the properties of a surface. The corona plasma is generated by the application of high voltage to an electrode that has a sharp tip. The plasma forms at the tip. A linear array of electrodes is often used to create a curtain of corona plasma. Materials such as plastics, cloth, or paper may be passed through the corona plasma curtain in order to change the surface energy of the material. All materials have an inherent surface energy. Surface treatment systems are available for virtually any surface format including dimensional objects, sheets and roll goods that are handled in a web format. Corona treatment is a widely used surface treatment method in the plastic film, extrusion, and converting industries.
The corona treatment was invented by the Danish engineer Verner Eisby in 1951. Eisby had been asked by one of his customers if he could find a solution which would make it possible to print on plastic.
Eisby found that there were already a couple of ways to accomplish this. One was a gas flame method and the other was a spark generating method, both of which were crude and uncontrollable and did not produce a homogeneous product. Eisby came up with the theory that a high frequency corona discharge would provide both a more efficient and controllable method to treat the surface. Exhaustive experiments proved him to be correct. Eisby's company, Vetaphone, obtained patent rights for the new corona treatment system.
Many plastics, such as polyethylene and polypropylene, have chemically inert and nonporous surfaces with low surface energy causing them to be non-receptive to bonding with printing inks, coatings, and adhesives. Although results are invisible to the naked eye, surface treating modifies surfaces to improve adhesion.
Polyethylene, polypropylene, nylon, vinyl, PVC, PET, metalized surfaces, foils, paper, and paperboard stocks are commonly treated by this method.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems.
The present work demonstrates organic circuits on a new class of substrate, silicone elastomers. The fabrication method relies on dry, additive processes performed at ultra-low substrate temperature (<100 °C). P-type pentacene and n-type C60 organic thi ...
Elsevier2010
, ,
This paper presents a fabrication of polymer microchips with homogeneous material technique due to surface treatment by plasma before sealing. UV laser photoablation was used for fast prototyping of microstructures, and oxygen plasma was used as a surface ...