In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.
The solution of this problem is important to classical mechanics, since many naturally occurring forces are central. Examples include gravity and electromagnetism as described by Newton's law of universal gravitation and Coulomb's law, respectively. The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem. Finally, the solution to the central-force problem often makes a good initial approximation of the true motion, as in calculating the motion of the planets in the Solar System.
The essence of the central-force problem is to solve for the position r of a particle moving under the influence of a central force F, either as a function of time t or as a function of the angle φ relative to the center of force and an arbitrary axis.
Central force and Newton's notation
A conservative central force F has two defining properties. First, it must drive particles either directly towards or directly away from a fixed point in space, the center of force, which is often labeled O. In other words, a central force must act along the line joining O with the present position of the particle. Second, a conservative central force depends only on the distance r between O and the moving particle; it does not depend explicitly on time or other descriptors of position.
This two-fold definition may be expressed mathematically as follows. The center of force O can be chosen as the origin of a coordinate system.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Related lectures (21)
Related people (7)
Related concepts (1)
In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The problem is to find the position or speed of the two bodies over time given their masses, positions, and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.
We show EOPL = PLS \cap PsansP \sansP AD. Here the class EOPL consists of all total search problems that reduce to the END -OF -POTENTIAL -LINE problem, which was introduced in the works by Hub'acv \ek and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 202 ...
Siam Publications2024
,
We derive confidence intervals (CIs) and confidence sequences (CSs) for the classical problem of estimating a bounded mean. Our approach generalizes and improves on the celebrated Chernoff method, yielding the best closed-form "empirical-Bernstein" CSs and ...
This thesis concerns the theory of positive-definite completions and its mutually beneficial connections to the statistics of function-valued or continuously-indexed random processes, better known as functional data analysis. In particular, it dwells upon ...