L-estimatorIn statistics, an L-estimator is an estimator which is a linear combination of order statistics of the measurements (which is also called an L-statistic). This can be as little as a single point, as in the median (of an odd number of values), or as many as all points, as in the mean. The main benefits of L-estimators are that they are often extremely simple, and often robust statistics: assuming sorted data, they are very easy to calculate and interpret, and are often resistant to outliers.
Average absolute deviationThe average absolute deviation (AAD) of a data set is the average of the absolute deviations from a central point. It is a summary statistic of statistical dispersion or variability. In the general form, the central point can be a mean, median, mode, or the result of any other measure of central tendency or any reference value related to the given data set. AAD includes the mean absolute deviation and the median absolute deviation (both abbreviated as MAD). Several measures of statistical dispersion are defined in terms of the absolute deviation.
Truncated meanA truncated mean or trimmed mean is a statistical measure of central tendency, much like the mean and median. It involves the calculation of the mean after discarding given parts of a probability distribution or sample at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually given as a percentage of the total number of points, but may also be given as a fixed number of points. For most statistical applications, 5 to 25 percent of the ends are discarded.
MidhingeIn statistics, the midhinge is the average of the first and third quartiles and is thus a measure of location. Equivalently, it is the 25% trimmed mid-range or 25% midsummary; it is an L-estimator. The midhinge is related to the interquartile range (IQR), the difference of the third and first quartiles (i.e. ), which is a measure of statistical dispersion. The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles.
Sample maximum and minimumIn statistics, the sample maximum and sample minimum, also called the largest observation and smallest observation, are the values of the greatest and least elements of a sample. They are basic summary statistics, used in descriptive statistics such as the five-number summary and Bowley's seven-figure summary and the associated box plot. The minimum and the maximum value are the first and last order statistics (often denoted X(1) and X(n) respectively, for a sample size of n).
Deviation (statistics)In mathematics and statistics, deviation is a measure of difference between the observed value of a variable and some other value, often that variable's mean. The sign of the deviation reports the direction of that difference (the deviation is positive when the observed value exceeds the reference value). The magnitude of the value indicates the size of the difference. Errors and residuals A deviation that is a difference between an observed value and the true value of a quantity of interest (where true value denotes the Expected Value, such as the population mean) is an error.
TrimeanIn statistics the trimean (TM), or Tukey's trimean, is a measure of a probability distribution's location defined as a weighted average of the distribution's median and its two quartiles: This is equivalent to the average of the median and the midhinge: The foundations of the trimean were part of Arthur Bowley's teachings, and later popularized by statistician John Tukey in his 1977 book which has given its name to a set of techniques called exploratory data analysis.
AverageIn ordinary language, an average is a single number taken as representative of a list of numbers, usually the sum of the numbers divided by how many numbers are in the list (the arithmetic mean). For example, the average of the numbers 2, 3, 4, 7, and 9 (summing to 25) is 5. Depending on the context, an average might be another statistic such as the median, or mode. For example, the average personal income is often given as the median—the number below which are 50% of personal incomes and above which are 50% of personal incomes—because the mean would be higher by including personal incomes from a few billionaires.
German tank problemIn the statistical theory of estimation, the German tank problem consists of estimating the maximum of a discrete uniform distribution from sampling without replacement. In simple terms, suppose there exists an unknown number of items which are sequentially numbered from 1 to N. A random sample of these items is taken and their sequence numbers observed; the problem is to estimate N from these observed numbers. The problem can be approached using either frequentist inference or Bayesian inference, leading to different results.
Trimmed estimatorIn statistics, a trimmed estimator is an estimator derived from another estimator by excluding some of the extreme values, a process called truncation. This is generally done to obtain a more robust statistic, and the extreme values are considered outliers. Trimmed estimators also often have higher efficiency for mixture distributions and heavy-tailed distributions than the corresponding untrimmed estimator, at the cost of lower efficiency for other distributions, such as the normal distribution.