Peaceful nuclear explosions (PNEs) are nuclear explosions conducted for non-military purposes. Proposed uses include excavation for the building of canals and harbours, electrical generation, the use of nuclear explosions to drive spacecraft, and as a form of wide-area fracking. PNEs were an area of some research from the late 1950s into the 1980s, primarily in the United States and Soviet Union.
In the U.S., a series of tests were carried out under Project Plowshare. Some of the ideas considered included blasting a new Panama Canal, constructing the proposed Nicaragua Canal, the use of underground explosions to create electricity (project PACER), and a variety of mining, geological, and radionuclide studies. The largest of the excavation tests was carried out in the Sedan nuclear test in 1962, which released large amounts of radioactive gas into the air. By the late 1960s, public opposition to Plowshare was increasing, and a 1970s study of the economics of the concepts suggested they had no practical use. Plowshare saw decreasing interest from the 1960s, and was officially cancelled in 1977.
The Soviet program started a few years after the U.S. efforts and explored many of the same concepts under their Nuclear Explosions for the National Economy program. The program was more extensive, eventually conducting 239 nuclear explosions. Some of these tests also released radioactivity, including a significant release of plutonium into the groundwater and the polluting of an area near the Volga River. A major part of the program in the 1970s and 80s was the use of very small bombs to produce shock waves as a seismic measuring tool, and as part of these experiments, two bombs were successfully used to seal blown-out oil wells. The program officially ended in 1988.
As part of ongoing arms control efforts, both programs came to be controlled by a variety of agreements. Most notable among these is the 1976 Treaty on Underground Nuclear Explosions for Peaceful Purposes (PNE Treaty).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The explosive yield of a nuclear weapon is the amount of energy released such as blast, thermal, and nuclear radiation, when that particular nuclear weapon is detonated, usually expressed as a TNT equivalent (the standardized equivalent mass of trinitrotoluene which, if detonated, would produce the same energy discharge), either in kilotonnes (kt—thousands of tonnes of TNT), in megatonnes (Mt—millions of tonnes of TNT), or sometimes in terajoules (TJ). An explosive yield of one terajoule is equal to .
A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction. The driving reaction may be nuclear fission or nuclear fusion or a multi-stage cascading combination of the two, though to date all fusion-based weapons have used a fission device to initiate fusion, and a pure fusion weapon remains a hypothetical device. Nuclear explosions are used in nuclear weapons and nuclear testing.
The effects of a nuclear explosion on its immediate vicinity are typically much more destructive and multifaceted than those caused by conventional explosives. In most cases, the energy released from a nuclear weapon detonated within the lower atmosphere can be approximately divided into four basic categories: the blast and shockwave: 50% of total energy thermal radiation: 35% of total energy ionizing radiation: 5% of total energy (more in a neutron bomb) residual radiation: 5–10% of total energy with the mass of the explosion.
This course will present an overview of the nuclear interactions for neutrons on nuclei below a few hundreds of MeV. The aspect of so-called "nuclear data" will be presented from the perspective of ex
Explores electron transfer processes in photochemistry, covering avoided crossing, adiabatic vs. diabatic transfer, Fermi's golden rule, and the Marcus-Jortner theory.
Characteristics of the spent nuclear fuel (SNF) are typically calculated, requiring validation a priori. The validation process relies on the difference between calculations and measurements, namely the bias. Usually, predicting the bias based on benchmark ...
EPFL2022
,
Elemental abundances of the most metal-poor stars reflect the conditions in the early Galaxy and the properties of the first stars. We present a spectroscopic follow-up of two ultra-metal-poor stars ([Fe/H] < -4.0) identified by the survey Pristine: Pristi ...
With the first tokamak designed for full nuclear operation now well into final assembly (ITER), and a major new research tokamak starting commissioning (JT60SA), nuclear fusion is becoming a mainstream potential energy source for the future. A critical par ...