Term (logic)In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact. A first-order term is recursively constructed from constant symbols, variables and function symbols. An expression formed by applying a predicate symbol to an appropriate number of terms is called an atomic formula, which evaluates to true or false in bivalent logics, given an interpretation.
Fuzzy logicFuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and completely false. By contrast, in Boolean logic, the truth values of variables may only be the integer values 0 or 1. The term fuzzy logic was introduced with the 1965 proposal of fuzzy set theory by Iranian Azerbaijani mathematician Lotfi Zadeh.
Mathematical logicMathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.
Boolean-valued functionA Boolean-valued function (sometimes called a predicate or a proposition) is a function of the type f : X → B, where X is an arbitrary set and where B is a Boolean domain, i.e. a generic two-element set, (for example B = {0, 1}), whose elements are interpreted as logical values, for example, 0 = false and 1 = true, i.e., a single bit of information. In the formal sciences, mathematics, mathematical logic, statistics, and their applied disciplines, a Boolean-valued function may also be referred to as a characteristic function, indicator function, predicate, or proposition.
Extension (predicate logic)The extension of a predicate a truth-valued function is the set of tuples of values that, used as arguments, satisfy the predicate. Such a set of tuples is a relation. For example, the statement "d2 is the weekday following d1" can be seen as a truth function associating to each tuple (d2, d1) the value true or false. The extension of this truth function is, by convention, the set of all such tuples associated with the value true, i.e.
PropositionA proposition is a central concept in the philosophy of language, semantics, logic, and related fields, often characterized as the primary bearer of truth or falsity. Propositions are also often characterized as being the kind of thing that declarative sentences denote. For instance the sentence "The sky is blue" denotes the proposition that the sky is blue. However, crucially, propositions are not themselves linguistic expressions.
Semantic theory of truthA semantic theory of truth is a theory of truth in the philosophy of language which holds that truth is a property of sentences. The semantic conception of truth, which is related in different ways to both the correspondence and deflationary conceptions, is due to work by Polish logician Alfred Tarski. Tarski, in "On the Concept of Truth in Formal Languages" (1935), attempted to formulate a new theory of truth in order to resolve the liar paradox.